8 resultados para Multitude

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INFLUENCE OF ANCHORING ON MISCARRIAGE RISK PERCEPTION ASSOCIATED WITH AMNIOCENTESIS Publication No. ___________ Regina Nuccio, BS Supervisory Professor: Claire N. Singletary, MS, CGC Amniocentesis is the most common invasive procedure performed during pregnancy (Eddleman, et al., 2006). One important factor that women consider when making a decision about amniocentesis is the risk of miscarriage associated with the procedure. People use heuristics such as anchoring, the action of using a prior belief regarding the magnitude of risk as a frame of reference for new information to be synthesized, to better understand risks that they encounter in their lives. This study aimed to determine a woman’s perception of miscarriage risk associated with amniocentesis before and after a genetic counseling session and to determine what factors are most likely to anchor a woman’s perception of miscarriage risk associated with amniocentesis. Most women perceived the risk as low or average pre-counseling and were likely to indicate the numeric risk of amniocentesis as <1% risk. A higher percentage of patients correctly identified the numeric risk as <1% post-counseling when compared to pre-counseling. However, the majority of patients’ feeling about the risk perception did not change after the genetic counseling session (60%), regardless of how they perceived the risk before discussing amniocentesis with a genetic counselor. Those whose risk perception did change after discussing amniocentesis with a genetic counselor showed a decreased risk perception (p<0.0001). Of the multitude of factors studied, only two showed significance: having a friend or relative with a personal or family history of a genetic disorder was associated with a lower risk perception (p=0.001) and having a child already was associated with a lower risk perception (p=0.038). The lack of significant factors may reflect the uniqueness of each patient’s heuristic framework and reinforces the importance of genetic counseling to elucidate individual concerns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding Nanog’s Role in Cancer Biology Mark Daniel Badeaux Supervisory Professor Dean Tang, PhD The cancer stem cell model holds that tumor heterogeneity and population-level immortality are driven by a subset of cells within the tumor, termed cancer stem cells. Like embryonic or somatic stem cells, cancer stem cells are believed to possess self-renewal capacity and the ability to give rise to a multitude of varieties of daughter cell. Because of cancer’s implied connections to authentic stem cells, we screened a variety of prostate cancer cell lines and primary tumors in order to determine if any notable ‘stemness’ genes were expressed in malignant growths. We found a promising lead in Nanog, a central figure in maintaining embryonic stem cell pluripotency, and through a variety of experiments in which we diminished Nanog expression, found that it may play a significant role in prostate cancer development. We then created a transgenic mouse model in which we targeted Nanog expression to keratin 14-expressing in order to assess its potential contribution to tumorigenesis. We found a variety of developmental abnormalities and altered differentiation patterns in our model , but much to our chagrin we observed neither spontaneous tumor formation nor premalignant changes in these mice, but instead surprisingly found that high levels of Nanog expression inhibited tumor formation in a two-stage skin carcinogenesis model. We also noted a depletion of skin stem cell populations, which underlies the wound-healing defect our mice harbor as well. Gene expression analysis shows a reduction in c-Jun and Bmp5, two genes whose loss inhibits skin tumor development and reduces stem cell counts respectively. As we further explored Nanog’s activity in prostate cancer, it became apparent that the protein oftentimes was not expressed. Emboldened by the competing endogenous RNA (ceRNA) hypothesis, we identified the Nanog 3’UTR as a regulator of the tumor suppressive microRNA 128a (miR-128a), which includes known oncogenes such as Bmi1 among its authentic targets. Future work will necessarily involve discerning instances in which Nanog mRNA is the biologically relevant molecule, as well as identifying additional mRNA species which may serve solely as a molecular sink for miR-128a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Attention Deficit-Hyperactivity Disorder (AD/HD) diagnosis in children and adolescents has been on the rise over the last couple of decades and a multitude of studies have been conducted in an aim to better understand the disease. Literature has explored the role of several factors suspected of contributing to development of the disease, including: prenatal smoking exposures, environmental exposures, and low-birth weight. However, there is very limited reporting of fetal/infant exposure to antidepressants and prescription medications and the long-term behavioral outcomes, namely development of AD/HD. The purpose of this study was to evaluate the relationship between mother's exposure to prescription medications and/or antidepressants around the time of conception, during pregnancy, or while breastfeeding and the development of Attention-Deficit/Hyperactivity Disorder in offspring. Methods. Secondary analysis of data from a case-control study was performed. Exposure histories were collected for the mother and offspring. Data were collected using a secure, confidential, self-report, online survey to evaluate the relationship between antidepressant and/or prescription medication exposure and the development of AD/HD. The period of exposure to these drugs was defined as: around the time of conception, during pregnancy, or while breastfeeding. Cases were defined as a child who had been diagnosed with AD/HD. Controls were defined as a child who had not been diagnosed with AD/HD. Results. Prescription medication and antidepressant medication exposures around the time of conception, during pregnancy, or while breastfeeding were not associated with development of AD/HD. However, traumatic brain injury (OR=2.77 (1.61–4.77)) and preterm birth (OR=1.48 (1.04–2.12)) were identified as potential risk factors. These results support existing literature on AD/HD, but future work must be undertaken to better evaluate fetal/infant medication exposures and long-term behavioral outcomes.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of diabetes in Mexican Americans is disproportionately higher than in non-Hispanic whites. The rate of diabetic retinopathy resulting from prolonged diabetes is also greater in Mexican Americans than in non-Hispanic whites. A longitudinal study was carried out on data collected from Mexican Americans in Starr County, Texas to assess the association between socioeconomic and acculturation factors with diabetic retinopathy prevalence, incidence, and progression in those free of diabetic retinopathy or who had only early non-proliferative diabetic retinopathy. A multivariable analysis was done. ^ The incidence rate was 12.78 cases per year and the progression rate was 8.55 cases per year. The baseline characteristics of the population revealed that more people with occupations synonymous with lower income jobs like trade workers and machine operators had early non-proliferative diabetic retinopathy. A multivariable analysis revealed that those with early non-proliferative diabetic retinopathy were more likely to have been born in Mexico as compared to those free of diabetic retinopathy. Surprisingly, a multivariable analysis also showed that those that progressed in diabetic retinopathy disease status were more likely to have been employed as compared to those that did not. ^ This analysis reveals that Mexican Americans are heterogeneous in socioeconomic and acculturation factors that may be used to deter the incidence and progression of diabetic retinopathy severity. These findings could be targeted to create culturally sensitive intervention programs that will improve the detection and treatment of diabetic retinopathy in the work arena in addition to programs that will impact those that do not work. Workplace preventative health screenings and dissemination of language-specific informational brochures is warranted to curb the rates of progression in those employed. ^ A limitation of this study is the narrow surrogates used for assessing socioeconomic and acculturation status. To fully evaluate these variables, a study using a questionnaire with a multitude of surrogates for socioeconomic and acculturation factors should be employed.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide is involved in a multitude of processes including regulation of vascular tone, neurotransmission, immunity, and cancer. Evidence suggests that nitric oxide exhibits anti-apoptotic activity in melanoma cells. Our laboratory showed that tumor expression of inducible nitric oxide synthase correlated strongly with poor survival in stage III and IV melanoma patients, suggesting an antagonistic role for nitric oxide in melanoma response to therapy. Therefore, the hypothesis that endogenously produced nitric oxide antagonizes chemotherapy-induced apoptosis was formed. Using cisplatin as a model for DNA damage in melanoma cell lines, the capacity of nitric oxide to regulate cell growth and apoptotic responses to cisplatin treatment was examined. The depletion of endogenously generated nitric oxide resulted in changes in cell cycle regulation and enhanced cisplatin-induced apoptosis in melanoma cells. Since nitric oxide was shown to be involved in the regulation of p53 stability, conformation and DNA binding activity, whether signaling through wild-type p53 in melanoma cells is regulated by nitric oxide was tested. Cisplatin-induced p53 accumulation and p21Waf1/Cip1/Sdi1 expression in nitric oxide-depleted melanoma cells were found to be strongly suppressed. When p53 binding to the p21Waf1/Cip1/Sdi1 promoter was examined, it was found that nitric oxide depletion significantly reduced the cisplatin-induced formation of p53-DNA complexes. These results suggest that nitric oxide is required for activation of wild-type p53 after DNA damage in melanoma cells. Finally, whether signaling through p53 controls melanoma response to DNA damage was examined. Transfection of a plasmid containing a dominant negative form of mutated p53 inhibited p21 Waf1/Cip1/Sdi1 expression and concomitantly enhanced apoptosis after cisplatin treatment. These data suggest that the induction of wild-type p53 protects melanoma cells against DNA damage via the up-regulation of p21 Waf1/Cip1/Sdi1. Together, these data strongly support the model that endogenous nitric oxide is required for p53 activation and p21Waf1/Cip1/Sdi1 expression after DNA damage, which can enhance melanoma resistance to therapy. Thus, in context of melanoma cells with wild-type p53 , low levels of endogenous constitutively-produced nitric oxide appear to facilitate the activation of p53 in response to DNA damage, thereby allowing for cell cycle arrest via p21Waf1/Cip1/Sdi1 induction, adequate DNA repair, and ultimately enhanced resistance to apoptosis. ^