3 resultados para Multiple probability vectors

em DigitalCommons@The Texas Medical Center


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Retroviruses are RNA viruses that replicate through a double-stranded DNA intermediate. The viral enzyme reverse transcriptase copies the retroviral genomic RNA into this DNA intermediate through the process of reverse transcription. Many variables can affect the fidelity of reverse transcriptase during reverse transcription, including specific sequences within the retroviral genome. ^ Previous studies have observed that multiple cloning sites (MCS) and sequences predicted to form stable hairpin structures are hotspots for deletion during retroviral replication. The studies described in this dissertation were performed to elucidate the variables that affect the stability of MCS and hairpin structures in retroviral vectors. Two series of retroviral vectors were constructed and characterized in these studies. ^ Spleen necrosis virus-based vectors were constructed containing separate MCS insertions of varying length, orientation, and symmetry. The only MCS that was a hotspot for deletion formed a stable hairpin structure. Upon more detailed study, the MCS previously reported as a hotspot for deletion was found to contain a tandem linker insertion that formed a hairpin structure. Murine leukemia virus-based vectors were constructed containing separate sequence insertions of either inverted repeat symmetry (122IR) that could form a hairpin structure, or little symmetry (122c) that would form a less stable structure. These insertions were made into either the neomycin resistance marker ( neo) or the hygromycin resistance marker (hyg) of the vector. 122c was stable in both neo and hyg, while 122IR was preferentially deleted in neo and was remarkably unstable in hyg. ^ These results suggest that MCS are hotspots for deletion in retroviral vectors if they can form hairpin structures, and that hairpin structures can be highly unstable at certain locations in retroviral vectors. This information may contribute to improved design of retroviral vectors for such uses as human gene therapy, and will contribute to a greater understanding of the basic science of retroviral reverse transcription. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inactivation by allelic exchange in clinical isolates of the emerging nosocomial pathogen Enterococcus faecium has been hindered by lack of efficient tools, and, in this study, transformation of clinical isolates was found to be particularly problematic. For this reason, a vector for allelic replacement (pTEX5500ts) was constructed that includes (i) the pWV01-based gram-positive repAts replication region, which is known to confer a high degree of temperature intolerance, (ii) Escherichia coli oriR from pUC18, (iii) two extended multiple-cloning sites located upstream and downstream of one of the marker genes for efficient cloning of flanking regions for double-crossover mutagenesis, (iv) transcriptional terminator sites to terminate undesired readthrough, and (v) a synthetic extended promoter region containing the cat gene for allelic exchange and a high-level gentamicin resistance gene, aph(2'')-Id, to distinguish double-crossover recombination, both of which are functional in gram-positive and gram-negative backgrounds. To demonstrate the functionality of this vector, the vector was used to construct an acm (encoding an adhesin to collagen from E. faecium) deletion mutant of a poorly transformable multidrug-resistant E. faecium endocarditis isolate, TX0082. The acm-deleted strain, TX6051 (TX0082Deltaacm), was shown to lack Acm on its surface, which resulted in the abolishment of the collagen adherence phenotype observed in TX0082. A mobilizable derivative (pTEX5501ts) that contains oriT of Tn916 to facilitate conjugative transfer from the transformable E. faecalis strain JH2Sm::Tn916 to E. faecium was also constructed. Using this vector, the acm gene of a nonelectroporable E. faecium wound isolate was successfully interrupted. Thus, pTEX5500ts and its mobilizable derivative demonstrated their roles as important tools by helping to create the first reported allelic replacement in E. faecium; the constructed this acm deletion mutant will be useful for assessing the role of acm in E. faecium pathogenesis using animal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomedicine is an innovative field of science which has recently generated many drug delivery platforms with exciting results. The great potential of these strategies rely on the unique characteristics of the devices at the nano-scale in terms of long time circulation in the blood stream, selective accumulation at the lesions sites, increased solubility in aqueous solutions, etc. Herein we report on a new drug delivery system known as a multistage system which is comprised of non-spherical, mesoporous silicon particles loaded with second stage nanoparticles. The rationally designed particle shape, the possibility to modulate the surface properties and the degree of porosity allow these carriers to be optimized for vascular targeting and to overcome the numerous biological barriers found in drug delivery. In this study we investigated the intra and inter cellular trafficking of the multistage system in endothelial cells bringing evidence of its bio-compatibility as well as its ability to perform multiple intra and inter cellular tasks. Once internalized in cells, the multi-particle construct is able to dissociate, localizing in different subcellular compartments which can be targeted for exocytosis. In particular the second stage nanoparticles were found to be secreted in microvesicles which can act as mediators of transfer of particles across the endothelium and between different endothelial and cancer cells.