3 resultados para Multiple description coding

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background research consisted of a hospital case series of all adult burn patients (n = 162) admitted to John Sealy Hospital's burn unit from January 1978 to June 1979. Comparisons between occupationally and nonoccupationally burned adults demonstrated that occupationally burned adults were significantly more likely to have been active in the burn injury event and to have changed jobs during the prior year. They were significantly less likely to have physical or mental problems which contributed to sustaining the burn injury. Comparisons between occupational and nonoccupational burn injury events concluded that occupational burn injury events were significantly more likely to involve multiple sources of energy, sparks as the source of ignition and gases as the source of combustion. Other salient characteristics of occupational burn injuries indicated that subsequent research should focus upon lost workday occupational burns and other injuries sustained by blue-collar petrochemical workers employed in Galveston County, Texas.^ Subsequent research consisted of a historical cohort study of occupational injuries sustained in 1979 by a cohort of blue-collar petrochemical workers (n = 1771) who belonged to O.C.A.W. Local 4-449 in Texas City, Texas. Specific cohort injury rates included 15.08 occupational injuries per 100 person work-years, 11.98 lost workday occupational injuries per 100 person work-years, and 1.64 lost workday occupational burn injuries per 100 person work-years. Salient results from this study indicate that burn injuries are a very important type (in terms of both frequency and severity) of occupational injury sustained by blue-collar petrochemical workers, pipefitters are at greatest risk of lost workday injuries and lost workday burn injuries, company-specific experiences are comparable for lost workday occupational injuries, differences among company-specific nonlost workday occupational injury experiences may not be "safety-related", and minimal job-specific experience may not place employees at greater risk of lost workday burn injuries.^