8 resultados para Multicellular Spheroid
em DigitalCommons@The Texas Medical Center
Resumo:
Initiation of Myxococcus xanthus multicellular development requires both nutrient limitation and high cell density. The extracellular signal, A signal, which consists of a set of amino acids at specific concentrations, serves as a cell density signal in M. xanthus early development. A reporter gene, designated 4521, that requires both starvation and A signal for developmental expression was used to identify mutations in the signal transduction pathways. A group of point mutations located in the chromosomal sasB locus that bypasses both requirements was previously isolated. One of these point mutations, sasB7, was mapped to the sasS gene, which is predicted to encode a transmembrane histidine protein kinase required for normal development. SasS is a positive regulator of 4521 and a candidate A signal sensor. This dissertation continues the characterization of the sasB locus, focusing on the sasR gene and the functional relationship of SasS and SasR. ^ The sasR gene is located 2.2-kb downstream of sasS. It is predicted to encode an NtrC-like response regulator, which belongs to the family of sigma54 transcriptional activators. SasR is a positive regulator of 4521 gene and is required for normal development. The sasR mutant displays phenotypes similar to that of sasS mutant. Both SasS and SasR are required for the A-signal-dependent 4521 expression. Genetic epistasis analysis indicates that SasR functions downstream of SasS. Biochemical studies show that SasS has autokinase activity, and phosphorylated SasS is able to transfer its phosphate to SasR. We propose that SasS and SasR form a two-component signal transduction system in the A signal transduction pathway. ^ To search for the genes regulated by SasS and SasR, expression patterns of a group of developmental genes were compared in wild-type and sasS null mutant backgrounds. SasS and SasR were found to positively regulate sasN and 4521. The sasN gene was previously identified as a negative regulator of 4521, located at about 170-bp downstream of sasR. It is required for normal fruiting body development. Based on the above data, a regulatory network consisting of sasS, sasR, sasN, and 4521 is hypothesized, and the interactions of the components in this network can now be further studied. ^
Resumo:
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when starved at high density. All of the identified M. xanthus lipopolysaccharide (LPS) O-antigen biosynthesis mutants exhibit defective motility and fruiting-body development. To determine the cause of these phenotypes, the cell-surface properties of the LPS O-antigen mutants were compared to wild-type cells. The binding characteristics of wild-type and LPS O-antigen-defective strains to cationic resin indicate that the mutant cell surfaces are more electronegative. Antibiotic sensitivity and hexadecane adhesion assays indicate that the wild-type M. xanthus cell surface is hydrophobic, supporting the idea that phospholipids are present in the outer leaflet of the outer membrane. The absence of the LPS O-antigen appears to expose charges associated with phospholipids and LPS core/lipid A, resulting in a dramatic alteration of the cell-surface organization and charge. These differences may affect the interaction of the LPS O-antigen mutants with their substratum and neighboring cells, leading to defects in social and single-cell gliding motility and thus, deficiencies in fruiting body formation. ^ The LPS O-antigen biosynthetic mutations also bypass the requirement of 4521 gene expression for the cell-density signal, A signal. The 4521 gene is overexpressed in these mutants. This 4521 overexpression is dependent on the sensor kinase SasS. Co-development with wild-type cells, or the addition of crude polysaccharides or membrane vesicles restores the ability of LPS O-antigen mutants to form fruiting bodies and lowers 4521 developmental gene expression to wild-type levels. Wild-type vesicles may attach or incorporate into the outer membrane of the mutants that lack LPS O-antigen, restoring a wild-type periplasmic status and allowing for normal levels of 4521 activity and fruiting body formation. We propose that the LPS composition and the configuration of the outer membrane are important elements for the complex behavioral response of M. xanthus fruiting body development. ^
Resumo:
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
Resumo:
Adhesion involves interactions between cells or cells with extracellular matrix components and is a fundamental process for all multicellular organisms as well as many pathogenic microbes. Integrins are heterodimeric transmembrane proteins that function as adhesion molecules and transduce signals between the extracellular environment and the intracellular cytoskeletal machinery. β1 integrin subfamily is highly expressed on T lymphocytes and mediates cell spreading, adhesion and coactivation. T lymphocytes have an important role in the regulation and homeostasis of the immune system therefore, the goals of this study were to first to investigate β1 integrin interaction with fibronectin binding protein A (FnbpA), a surface protein expressed on gram-negative bacteria Staphylococcus aureus. Second, characterize the association and function of a non-integrin surface protein, CD98, with β1 integrins on T lymphocytes. ^ FnbpA binds to fibronectin (FN), also a ligand for α5β1 and α4β1 integrins on T lymphocytes. Since both bacterial proteins FnbpA and T cell integrins utilize FN, it was of interest to determine the effects FnbpA on T cell activation. Results demonstrated that recombinant FnbpA (rFnbpA) coimmobilized with OKT3 mediated T cell coactivation in a soluble FN-dependent manner. Integrin α5β1 was identified as the main integrin utilized by Staphylococcus aureus FnbpA from studies using soluble antibodies to inhibit T cell proliferation and parallel plate flow chamber assays. The mechanism of rFnbpA-mediated coactivation was one that used soluble FN as a bridge between rFnbpA and integrin α5β1 on the T lymphocyte. ^ Since integrins are utilized by T lymphocytes and bacterial proteins, it was of interest to identify proteins involved in integrin regulation. Anti-CD98 mAb 80A10 was identified and characterized from a screen to identify surface proteins involved in integrin signaling and functions. CD98 is a non-integrin protein that was sensitive to integrin inhibition in human T lymphocyte aggregation and activation, thus suggested that CD98 shared a common signaling pathway with integrins. These results led to the question of whether CD98 physically associates with β1 integrins. Fluorescence microscopy and biochemical analysis determined that CD98 is specifically associated with β1 integrin on human T lymphocytes and may be part of a larger multimolecular signaling complex. ^
Resumo:
Myxococcus xanthus is a Gram-negative soil bacterium that undergoes multicellular development when high-density cells are starved on a solid surface. Expression of the 4445 gene, predicted to encode a periplasmic protein, commences 1.5 h after the initiation of development and requires starvation and high density conditions. Addition of crude or boiled supernatant from starving high-density cells restored 4445 expression to starving low-density cells. Addition of L-threonine or L-isoleucine to starving low-density cells also restored 4445 expression, indicating that the high-density signaling activity present in the supernatant might be composed of extracellular amino acids or small peptides. To investigate the circuitry integrating these starvation and high-density signals, the cis- and trans-acting elements controlling 4445 expression were identified. The 4445 transcription start site was determined by primer extension analysis to be 58 by upstream of the predicted translation start site. The promoter region contained a consensus sequence characteristic of e&barbelow;xtrac&barbelow;ytoplasmic f&barbelow;unction (ECF) sigma factor-dependent promoters, suggesting that 4445 expression might be regulated by an ECF sigma factor-dependent pathway, which are known to respond to envelope stresses. The small size of the minimum regulatory region, identified by 5′-end deletion analysis as being only 66 by upstream of the transcription start site, suggests that RNA polymerase could be the sole direct regulator of 4445 expression. To identify trans-acting negative regulators of 4445 expression, a strain containing a 4445-lacZ was mutagenized using the Himar1-tet transposon. The four transposon insertions characterized mapped to an operon encoding a putative ECF sigma factor, ecfA; an anti-sigma factor, reaA; and a negative regulator, reaB. The reaA and the reaB mutants expressed 4445 during growth and development at levels almost 100-fold higher than wild type, indicating that these genes encode negative regulators. The ecfA mutant expressed 4445-lacZ at basal levels, indicating that ecfA is a positive regulator. High Mg2+ concentrations over-stimulated this ecfA pathway possibly due to the depletion of exopolysaccharides and assembled type IV pili. These data indicate that the ecfA operon encodes a new regulatory stress pathway that integrates and transduces starvation and cell density cues during early development and is also responsive to cell-surface alterations.^
Resumo:
Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^
Resumo:
Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^
Resumo:
Dictyostelium, a soil amoeba, is able to develop from free-living cells to multicellular fruiting bodies upon starvation using extracellular cAMP to mediate cell-cell communication, chemotaxis and developmental gene expression. The seven transmembrane G protein-coupled cAMP receptor-1 (cAR1) mediated responses, such as the activation of adenylyl cyclase and guanylyl cyclase, are transient, due to the existence of poorly understood adaptation mechanisms. For this dissertation, the powerful genetics of the Dictyostelium system was employed to study the adaptation mechanism of cAR1-mediated cAMP signaling as well as mechanisms intrinsic to cAR1 that regulate its activation. ^ We proposed that constitutively active cAR1 would cause constant adaptation, thus inhibiting downstream pathways that are essential for aggregation and development. Therefore, a screen for dominant negative cAR1 mutants was undertaken to identify constitutively active receptor mutants. Three dominant negative cAR1 mutants were identified. All appear to be constitutively active receptor mutants because they are constitutively phosphorylated and possess high affinity for cAMP. Biochemical studies showed that these mutant receptors prevented the activation of downstream effectors, including adenylyl and guanylyl cyclases. In addition, these cells also were defective in cAMP chemotaxis and cAR1-mediated gene expression. These findings suggest that the mutant receptors block development by constantly activating multiple adaptation pathways. ^ Sequence analysis revealed that these mutations (I104N, L100H) are clustered in a conserved region of the third transmembrane helix (TM3) of cAR1. To investigate the role of this region in receptor activation, one of these residues, I104, was mutated to all the other 19 possible amino acids. We found that all but the most conservative substitutions increase the receptor's affinity about 20- to 70-fold. However, only highly polar substitutions of I104, particularly basic residues, resulted in receptors that are constitutively phosphorylated and dominantly inhibit development, suggesting that highly polar substitutions not only disrupt an interaction constraining the receptor in its low-affinity, inactive state but also promote an additional conformational change that resembles the ligand-bound conformation. Our findings suggest that I104 plays a specific role in constraining the receptor in its inactive state and that substituting it with highly polar residues results in constitutive activation. ^