8 resultados para Multi-model inference
em DigitalCommons@The Texas Medical Center
Resumo:
Mycobacterium tuberculosis (Mtb) replicates within the human macrophages and we investigated the activating effects of retinoic acid (RA) and vitamin D3 (VD) on macrophages in relation to the viability of Mtb. A combination of these vitamins (RAVD) enhanced the receptors on THP-1 macrophage (Mannose receptor and DC-SIGN) that increased mycobacterial uptake but inhibited thesubsequent intracellular growth of Mtb by inducing reactive oxygen species (ROS) and autophagy. RAVD also enhanced antigen presenting and homing receptors in THPs that suggested an activated phenotype for THPs following RAVD treatment. RAVD mediated activation was also associated with a marked phenotypic change in Mtb infected THPs that fused with adjacent cells to formmultinucleate giant cells (MNGCs). Typically MNGCs occurred over 30 days of in vitro culture and contained non-replicating persisting Mtb for as long as 60 days in culture. We propose that the RAVD mediated inhibition of replicating Mtb leading to persistence of non-replicating Mtb within THPs may provide a novel human macrophage model simulating formation of MNGCs in humanlungs.
Resumo:
The impact of health promotion programs is related to both program effectiveness and the extent to which the program is implemented among the target population. The purpose of this dissertation was to describe the development and evaluation of a school-based program diffusion intervention designed to increase the rate of dissemination and adoption of the Child and Adolescent Trial for Cardiovascular Health, or CATCH program (recently renamed the Coordinated Approach to Child Health). ^ The first study described the process by which schools across the state of Texas spontaneously began to adopt the CATCH program after it was tested and proven effective in a multi-site randomized efficacy trial. A survey of teachers and administrator representatives of all schools on record that purchased the CATCH program, but were not involved in the efficacy trial, was used to find out who brought CATCH into the schools, how they garnered support for its adoption, why they decided to adopt the program, and what was involved in deciding to adopt. ^ The second study described how the Intervention Mapping framework guided the planning, development and implementation of a program for the diffusion of CATCH. An iterative process was used to integrate theory, literature, the experience of project staff and data from the target population into a meaningful set of program determinants and performance objectives. Proximal program objectives were specified and translated into both media and interpersonal communication strategies for program diffusion. ^ The third study assessed the effectiveness of the diffusion program in a case-comparison design. Three of the twenty Education Service Center regions in Texas were chosen, selected based on similar demographic criteria, and were followed for adoption of the CATCH curriculum. One of these regions received the full media and interpersonal channel intervention; a second received a reduced media-only intervention, and a third received no intervention. Results suggested the use of the interpersonal channels with media follow-up is an effective means to facilitate program dissemination and adoption. The media-alone condition was not effective in facilitating program adoption. ^
Resumo:
With substance abuse treatment expanding in prisons and jails, understanding how behavior change interacts with a restricted setting becomes more essential. The Transtheoretical Model (TTM) has been used to understand intentional behavior change in unrestricted settings, however, evidence indicates restrictive settings can affect the measurement and structure of the TTM constructs. The present study examined data from problem drinkers at baseline and end-of-treatment from three studies: (1) Project CARE (n = 187) recruited inmates from a large county jail; (2) Project Check-In (n = 116) recruited inmates from a state prison; (3) Project MATCH, a large multi-site alcohol study had two recruitment arms, aftercare (n = 724 pre-treatment and 650 post-treatment) and outpatient (n = 912 pre-treatment and 844 post-treatment). The analyses were conducted using cross-sectional data to test for non-invariance of measures of the TTM constructs: readiness, confidence, temptation, and processes of change (Structural Equation Modeling, SEM) across restricted and unrestricted settings. Two restricted (jail and aftercare) and one unrestricted group (outpatient) entering treatment and one restricted (prison) and two unrestricted groups (aftercare and outpatient) at end-of-treatment were contrasted. In addition TTM end-of-treatment profiles were tested as predictors of 12 month drinking outcomes (Profile Analysis). Although SEM did not indicate structural differences in the overall TTM construct model across setting types, there were factor structure differences on the confidence and temptation constructs at pre-treatment and in the factor structure of the behavioral processes at the end-of-treatment. For pre-treatment temptation and confidence, differences were found in the social situations factor loadings and in the variance for the confidence and temptation latent factors. For the end-of-treatment behavioral processes, differences across the restricted and unrestricted settings were identified in the counter-conditioning and stimulus control factor loadings. The TTM end-of-treatment profiles were not predictive of drinking outcomes in the prison sample. Both pre and post-treatment differences in structure across setting types involved constructs operationalized with behaviors that are limited for those in restricted settings. These studies suggest the TTM is a viable model for explicating addictive behavior change in restricted settings but calls for modification of subscale items that refer to specific behaviors and caution in interpreting the mean differences across setting types for problem drinkers. ^
Resumo:
Anticancer drugs typically are administered in the clinic in the form of mixtures, sometimes called combinations. Only in rare cases, however, are mixtures approved as drugs. Rather, research on mixtures tends to occur after single drugs have been approved. The goal of this research project was to develop modeling approaches that would encourage rational preclinical mixture design. To this end, a series of models were developed. First, several QSAR classification models were constructed to predict the cytotoxicity, oral clearance, and acute systemic toxicity of drugs. The QSAR models were applied to a set of over 115,000 natural compounds in order to identify promising ones for testing in mixtures. Second, an improved method was developed to assess synergistic, antagonistic, and additive effects between drugs in a mixture. This method, dubbed the MixLow method, is similar to the Median-Effect method, the de facto standard for assessing drug interactions. The primary difference between the two is that the MixLow method uses a nonlinear mixed-effects model to estimate parameters of concentration-effect curves, rather than an ordinary least squares procedure. Parameter estimators produced by the MixLow method were more precise than those produced by the Median-Effect Method, and coverage of Loewe index confidence intervals was superior. Third, a model was developed to predict drug interactions based on scores obtained from virtual docking experiments. This represents a novel approach for modeling drug mixtures and was more useful for the data modeled here than competing approaches. The model was applied to cytotoxicity data for 45 mixtures, each composed of up to 10 selected drugs. One drug, doxorubicin, was a standard chemotherapy agent and the others were well-known natural compounds including curcumin, EGCG, quercetin, and rhein. Predictions of synergism/antagonism were made for all possible fixed-ratio mixtures, cytotoxicities of the 10 best-scoring mixtures were tested, and drug interactions were assessed. Predicted and observed responses were highly correlated (r2 = 0.83). Results suggested that some mixtures allowed up to an 11-fold reduction of doxorubicin concentrations without sacrificing efficacy. Taken together, the models developed in this project present a general approach to rational design of mixtures during preclinical drug development. ^
Resumo:
Institutional Review Boards (IRBs) are the primary gatekeepers for the protection of ethical standards of federally regulated research on human subjects in this country. This paper focuses on what general, broad measures that may be instituted or enhanced to exemplify a "model IRB". This is done by examining the current regulatory standards of federally regulated IRBs, not private or commercial boards, and how many of those standards have been found either inadequate or not generally understood or followed. The analysis includes suggestions on how to bring about changes in order to make the IRB process more efficient, less subject to litigation, and create standardized educational protocols for members. The paper also considers how to include better oversight for multi-center research, increased centralization of IRBs, utilization of Data Safety Monitoring Boards when necessary, payment for research protocol review, voluntary accreditation, and the institution of evaluation/quality assurance programs. ^ This is a policy study utilizing secondary analysis of publicly available data. Therefore, the research for this paper focuses on scholarly medical/legal journals, web information from the Department of Health and Human Services, Federal Drug Administration, and the Office of the Inspector General, Accreditation Programs, law review articles, and current regulations applicable to the relevant portions of the paper. ^ Two issues are found to be consistently cited by the literature as major concerns. One is a need for basic, standardized educational requirements across all IRBs and its members, and secondly, much stricter and more informed management of continuing research. There is no federally regulated formal education system currently in place for IRB members, except for certain NIH-based trials. Also, IRBs are not keeping up with research once a study has begun, and although regulated to do so, it does not appear to be a great priority. This is the area most in danger of increased litigation. Other issues such as voluntary accreditation and outcomes evaluation are slowing gaining steam as the processes are becoming more available and more sought after, such as JCAHO accrediting of hospitals. ^ Adopting the principles discussed in this paper should promote better use of a local IRBs time, money, and expertise for protecting the vulnerable population in their care. Without further improvements to the system, there is concern that private and commercial IRBs will attempt to create a monopoly on much of the clinical research in the future as they are not as heavily regulated and can therefore offer companies quicker and more convenient reviews. IRBs need to consider the advantages of charging for their unique and important services as a cost of doing business. More importantly, there must be a minimum standard of education for all IRB members in the area of the ethical standards of human research and a greater emphasis placed on the follow-up of ongoing research as this is the most critical time for study participants and may soon lead to the largest area for litigation. Additionally, there should be a centralized IRB for multi-site trials or a study website with important information affecting the trial in real time. There needs to be development of standards and metrics to assess the performance of the IRBs for quality assurance and outcome evaluations. The boards should not be content to run the business of human subjects' research without determining how well that function is actually being carried out. It is important that federally regulated IRBs provide excellence in human research and promote those values most important to the public at large.^
Resumo:
The purpose of this study is to examine the stages of program realization of the interventions that the Bronx Health REACH program initiated at various levels to improve nutrition as a means for reducing racial and ethnic disparities in diabetes. This study was based on secondary analyses of qualitative data collected through the Bronx Health REACH Nutrition Project, a project conducted under the auspices of the Institute on Urban Family Health, with support from the Centers for Disease Control and Prevention (CDC). Local human subjects' review and approval through the Institute on Urban Family Health was required and obtained in order to conduct the Bronx Health REACH Nutrition Project. ^ The study drew from two theoretical models—Glanz and colleagues' nutrition environments model and Shediac-Rizkallah and Bone's sustainability model. The specific study objectives were two-fold: (1) to categorize each nutrition activity to a specific dimension (i.e. consumer, organizational or community nutrition environment); and (2) to evaluate the stage at which the program has been realized (i.e. development, implementation or sustainability). ^ A case study approach was applied and a constant comparative method was used to analyze the data. Triangulation of data based was also conducted. Qualitative data from this study revealed the following principal findings: (1) communities of color are disproportionately experiencing numerous individual and environmental factors contributing to the disparities in diabetes; (2) multi-level strategies that targeted the individual, organizational and community nutrition environments can appropriately address these contributing factors; (3) the nutrition strategies greatly varied in their ability to appropriately meet criteria for the three program stages; and (4) those nutrition strategies most likely to succeed (a) conveyed consistent and culturally relevant messages, (b) had continued involvement from program staff and partners, (c) were able to adapt over time or setting, (d) had a program champion and a training component, (e) were integrated into partnering organizations, and (f) were perceived to be successful by program staff and partners in their efforts to create individual, organizational and community/policy change. As a result of the criteria-based assessment and qualitative findings, an ecological framework elaborating on Glanz and colleagues model was developed. The qualitative findings and the resulting ecological framework developed from this study will help public health professionals and community leaders to develop and implement sustainable multi-level nutrition strategies for addressing racial and ethnic disparities in diabetes. ^
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^
Resumo:
Multi-center clinical trials are very common in the development of new drugs and devices. One concern in such trials, is the effect of individual investigational sites enrolling small numbers of patients on the overall result. Can the presence of small centers cause an ineffective treatment to appear effective when treatment-by-center interaction is not statistically significant?^ In this research, simulations are used to study the effect that centers enrolling few patients may have on the analysis of clinical trial data. A multi-center clinical trial with 20 sites is simulated to investigate the effect of a new treatment in comparison to a placebo treatment. Twelve of these 20 investigational sites are considered small, each enrolling less than four patients per treatment group. Three clinical trials are simulated with sample sizes of 100, 170 and 300. The simulated data is generated with various characteristics, one in which treatment should be considered effective and another where treatment is not effective. Qualitative interactions are also produced within the small sites to further investigate the effect of small centers under various conditions.^ Standard analysis of variance methods and the "sometimes-pool" testing procedure are applied to the simulated data. One model investigates treatment and center effect and treatment-by-center interaction. Another model investigates treatment effect alone. These analyses are used to determine the power to detect treatment-by-center interactions, and the probability of type I error.^ We find it is difficult to detect treatment-by-center interactions when only a few investigational sites enrolling a limited number of patients participate in the interaction. However, we find no increased risk of type I error in these situations. In a pooled analysis, when the treatment is not effective, the probability of finding a significant treatment effect in the absence of significant treatment-by-center interaction is well within standard limits of type I error. ^