2 resultados para Multi channel beams
em DigitalCommons@The Texas Medical Center
Resumo:
The Internet, and specifically web 2.0 social media applications, offers an innovative method for communicating child health information to low-income parents. The main objective of this study was to use qualitative data to determine the value of using social media to reach low-income parents with child health information. A qualitative formative evaluation employing focus groups was used to determine the value of using social media for dissemination of child health information. Inclusion criteria included: (1) a parent with a child that attends a school in a designated Central Texas school district; and (2) English-speaking. The students who attend these schools are generally economically disadvantaged and are predominately Hispanic. The classic analysis strategy was used for data analysis. Focus group participants (n=19) were female (95%); White (53%), Hispanic (42%) or African American (5%); and received government assistance (63%). Most had access to the Internet (74%) and were likely to have low health literacy (53%). The most preferred source of child health information was the family pediatrician or general practitioner. Many participants were familiar with social media applications and had profiles on popular social networking sites, but used them infrequently. Objections to social media sites as sources of child health information included lack of credibility and parent time. Social media has excellent potential for reaching low-income parents when used as part of a multi-channel communication campaign. Further research should focus on the most effective type and format of messages that can promote behavior change in this population, such as story-telling. ^
Resumo:
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^