5 resultados para Morphological Development

em DigitalCommons@The Texas Medical Center


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role of adrenal and thyroid hormones on the development of chief and parietal cells was studied in the rat. Administration of corticosterone or thyroxine in the first and second postnatal weeks resulted in the precocious appearance of pepsinogen in the oxyntic gland mucosa and an increase in basal acid output. When pups were adrenalectomized or made hypothyroid, both pepsinogen and basal acid secretion were lowed. Corticosterone injection increased pepsinogen content and acid secretion to levels higher than those of control in hypothyroid and adrenalectomized rats while thyroxine had no such effect in adrenalectomized rats. Morphologically, chief cells responded to corticosterone or thyroxine with increases in both zymogen granules and RER. Chief cells, however, contained less zymogen granules and RER in adrenalectomized and hypothyroid rats. Corticosterone was effective in restoring the normal morphological appearance of chief cells in the hypothyroid rats while thyroxine had no effect in the adrenalectomized rats. In response to corticosterone or thyroxine, parietal cells in normal animals appeared to contain more mitochondria, tubulovesicles and intracellular canaliculi than those of control. Unlike chief cells, parietal cells retained normal ultrastructure in the absence of adrenal and thyroid hormones. These data indicate that (1) corticosterone is necessary for the functional and morphological development of chief cells; (2) the morphological development of parietal cells does not appear to depend upon corticosterone, (3) the effect of thyroxine on the development of chief and parietal cells is due to corticosterone. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphological analysis of neonatal rabbit retina suggests that the type-A horizontal cell acts as the pioneer cell for development of the OPL. It is the first mature element of the OPL, and it forms the infrastructure upon which the OPL accrues. The role of type-A horizontal cells in influencing postnatal development of the OPL was examined.^ GABAergic characteristics of the type-A horizontal cell were defined. The type-A horizontal cell was found to possess two more GABAergic characteristics in addition to those previously demonstrated, during a short period in early postnatal development: endogenous stores of GABA and the GABA precursor, glutamate. Lesioning the type-A horizontal cell resulted in their permanent loss in addition to the disappearance of cone terminals and a dramatic increase in rod terminals within the OPL. Thus the type-A cells are not a necessary prerequisite for positioning the OPL in postnatal development, but may be necessary for establishment of the normal photoreceptor mosaic.^ Since type-A horizontal cells possess a number of GABAergic qualities during the period of cone photoreceptor cell differentiation, and there are reports of GABA's trophic action in other developing neuronal systems; the role that GABAergic type-A horizontal cells play in directing photoreceptor differentiation was examined.^ Disrupting effects of GABA-A receptor antagonists indicate that type-A horizontal cells act as postsynaptic targets for the growing cone terminals of photoreceptor cells. These trophic or synaptic interactions may involve GABA-A receptors activated by GABA released from horizontal cells. These findings are consistent with the hypothesis that type-A horizontal cells act as pioneering cells in directing the postnatal development of the OPL.^ These studies offer an in depth analysis of the structural and chemical relationship between type-A horizontal cells and other elements of the OPL from which the roles of type-A horizontal cells and the GABA system in development can be defined. They contribute to our knowledge of both structural and GABAergic mechanisms involved in central nervous system development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve injury is known to produce a variety of electrophysiological and morphological neuronal alterations (reviewed by Titmus and Faber, 1990; Bulloch and Ridgeway, 1989; Walters, 1994). Determining if these alterations are adaptive and how they are activated and maintained could provide important insight into basic cellular mechanisms of injury-induced plasticity. Furthermore, characterization of injury-induced plasticity provides a useful assay system for the identification of possible induction signals underlying these neuronal changes. Understanding fundamental mechanisms and underlying induction signals of injury-induced neuronal plasticity could facilitate development of treatment strategies for neural injury and neuropathic pain in humans.^ This dissertation characterizes long-lasting, injury-induced neuronal alterations using the nervous system of Aplysia californica as a model. These changes are examined at the behavioral, electrophysiological, and morphological levels. Injury-induced changes in the electrophysiological properties of neurons were found that increased the signaling effectiveness of the injured neurons. This increase in signalling effectiveness could act to compensate for partial destruction of the injured neuron's peripheral processes. Recovery of a defensive behavioral response which serves to protect the animal from further injury was found within 2 weeks of injury. For the behavioral recovery to occur, new neural pathways must have been formed between the denervated area and the CNS. This was found to be mediated at least in part by new axonal growth which extended from the injured cell back along the original pathway (i.e. into the injured nerve). In addition, injury produced central axonal sprouting into different nerves that do not usually contain the injured neuron's axons. This could be important for (i) finding alternative pathways to the periphery when the original pathways are impassable and (ii) the formation of additional synaptic connections with post-synaptic targets which would further enhance the signalling effectiveness of the injured cell. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work examines the role of cAMP in the induction of the type of long-term morphological changes that have been shown to be correlated with long-term sensitization in Aplysia.^ To examine this issue, cAMP was injected into individual tail sensory neurons in the pleural ganglion to mimic, at the single cell level, the effects of behavioral training. After a 22 hr incubation period, the same cells were filled with horseradish peroxidase and 2 hours later the tissue was fixed and processed. Morphological analysis revealed that cAMP induced an increase in two morphological features of the neurons, varicosities and branch points. These structural alterations, which are similar to those seen in siphon sensory neurons of the abdominal ganglion following long-term sensitization training of the siphon-gill withdrawal reflex, could subserve the altered behavioral response of the animal. These results expose another role played by cAMP in the induction of learning, the initiation of a structural substrate, which, in concert with other correlates, underlies learning.^ cAMP was injected into sensory neurons in the presence of the reversible protein synthesis inhibitor, anisomycin. The presence of anisomycin during and immediately following the nucleotide injection completely blocked the structural remodeling. These results indicate that the induction of morphological changes by cAMP is a process dependent on protein synthesis.^ To further examine the temporal requirement for protein synthesis in the induction of these changes, the time of anisomycin exposure was varied. The results indicate that the cellular processes triggered by cAMP are sensitive to the inhibition of protein synthesis for at least 7 hours after the nucleotide injection. This is a longer period of sensitivity than that for the induction of another correlate of long-term sensitization, facilitation of the sensory to motor neuron synaptic connection. Thus, these findings demonstrate that the period of sensitivity to protein synthesis inhibition is not identical for all correlates of learning. In addition, since the induction of the morphological changes can be blocked by anisomycin pulses administered at different times during and following the cAMP injection, this suggests that cAMP is triggering a cascade of protein synthesis, with successive rounds of synthesis being dependent on successful completion of preceding rounds. Inhibition at any time during this cascade can block the entire process and so prevent the development of the structural changes.^ The extent to which cAMP can mimic the structural remodeling induced by long-term training was also examined. Animals were subjected to unilateral sensitization training and the morphology of the sensory neurons was examined twenty-four hours later. Both cAMP injection and long-term training produced a twofold increase in varicosities and approximately a fifty percent increase in the number of branch points in the sensory neuron arborization within the pleural ganglion. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone acetyltransferases are important chromatin modifiers that function as transcriptional co-activators. The identification of the transcriptional regulator GCN5 as the first nuclear histone acetyltransferase in yeast directly linked chromatin remodeling to transcriptional regulation. Although emerging evidence suggests that acetyltransferases participate in multiple cellular processes, their roles in mammalian development remain undefined. In this study, I have cloned and characterized the mouse homolog of GCN5 and a closely related protein P/CAF that interacts with p300/CBP. In contrast to yeast GCN5, but similar to P/CAF, mouse GCN5 possesses an additional N-terminal domain that confers the ability to acetylate nucleosomal histones. GCN5 and P/CAF exhibit identical substrate specificity and both interact with p300/CBP. Interestingly, expression levels of GCN5 and P/CAF display a complementary pattern in mouse embryos and in adult tissues, suggesting that they have distinct tissue or developmental stage specific roles. To define the in vivo function of GCN5 and P/CAF, I have generated mice that are nullizygous for GCN5 or P/CAF. P/CAF null mice are viable and fertile with no gross morphological defects, indicating that P/CAF is dispensable for development and p300/CBP function in vivo. In contrast, mice lacking GCN5 die between 10.5–11 days of gestation. GCN5 null mice are severely retarded but have anterior ectopic outgrowth. Molecular marker analyses reveal that early mesoderm is formed in GCN5 null mice but further differentiation into distinct mesodermal lineages is perturbed. While presomitic mesoderm and chodamesoderm are missing in GCN5 mutant mice, extraembryonic tissues and lateral mesoderm are unaffected. This is consistent with our finding that GCN5 expression is absent in the heart and extraembryonic tissues but is uniform throughout the rest of the embryo. Remarkably, GCN5 mutant mice exhibit an unusually high incidence of apoptosis in the embryonic ectoderm and mesoderm. Finally, mice doubly null for GCN5 and P/CAF die much earlier than mice harboring the GCN5 mutation alone, suggesting that P/CAF and GCN5 share some overlapping function during embryogenesis. This work is the first study to show that specific acetyltransferase is important for cell survival as well as mesoderm differentiation or maintenance during early mammalian development. ^