7 resultados para Molecular size effect
em DigitalCommons@The Texas Medical Center
The effect of v-{\it mos\/} expression on the regulation of the {\it fos\/} promoter in 490N3T cells
Resumo:
The v-mos oncogene acquired by Moloney murine sarcoma viruses by recombination with the c-mos proto-oncogene encodes a 37kD cytoplasmic serine/threonine protein kinase which can phosphorylate tubulin and vimentin, as well as the cyclin B component of the maturation promotion factor complex (MPF). Our earliest experiments asked whether the v-mos protein could activate the transcription of transin. Since the transcription of transin was known to be mediated by both fos-dependent and fos-independent pathways, it seemed possible that the induction of transin transcription by v-mos might be mediated by p55$\sp{\rm c-}\sp{fos}$. Surprisingly, when we examined the effect of v-mos on the fos promoter, we observed a significant inhibition of transcription in 49ON3T cells, a subclone of N1H3T3 mouse fibroblasts.^ In this thesis we show that in mouse 49ON3T cells, transcription from the fos promoter is up to 10-fold repressed in the presence of v-mos. Moreover, in this cell line several other transforming constructs (v-ras, v-src, neu) also cause repression of the fos promoter. Interestingly, nontransforming oncogenes (e.g. myc) do not repress fos transcription. The repressive effect was lost in v-mos mutants lacking in ATP-binding or kinase domain, arguing that the effect on fos transcription was mediated by v-mos transforming kinase activity. As mos is a cytoplasmic protein, it was assumed that transcriptional repression was mediated by conversion of a transcriptional regulator to a repressor by mos-induced phosphorylation. As a first approximation of the identity of this factor, we mapped the position of the mos effect on the fos promoter using reporter (CAT) constructs. We found that repression was mediated by regions $-$221 to $-$106 and $-$122 to $-$65 relative to the fos transcriptional start site, both of which regions regulate baseline fos transcription. There are direct repeats containing E2F transcriptional activator/repressor recognition motifs in these regions which bind similar nuclear proteins independently of v-mos presence or absence. Our data show that the contribution of the direct repeat to baseline fos transcription is mediated by these E2F sites with perhaps some contribution from the overlapping retinoblastoma control element (RCE). We have shown that there is a separate DNA protein interaction in the direct repeat which is more pronounced in the presence of v-mos. The recognition site for this protein, which we speculate mediates the mos-induced downregulation of fos transcription, overlaps but is distinct from the E2F and RCE binding sites. (Abstract shortened by UMI.) ^
Resumo:
CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^
Resumo:
An interim analysis is usually applied in later phase II or phase III trials to find convincing evidence of a significant treatment difference that may lead to trial termination at an earlier point than planned at the beginning. This can result in the saving of patient resources and shortening of drug development and approval time. In addition, ethics and economics are also the reasons to stop a trial earlier. In clinical trials of eyes, ears, knees, arms, kidneys, lungs, and other clustered treatments, data may include distribution-free random variables with matched and unmatched subjects in one study. It is important to properly include both subjects in the interim and the final analyses so that the maximum efficiency of statistical and clinical inferences can be obtained at different stages of the trials. So far, no publication has applied a statistical method for distribution-free data with matched and unmatched subjects in the interim analysis of clinical trials. In this simulation study, the hybrid statistic was used to estimate the empirical powers and the empirical type I errors among the simulated datasets with different sample sizes, different effect sizes, different correlation coefficients for matched pairs, and different data distributions, respectively, in the interim and final analysis with 4 different group sequential methods. Empirical powers and empirical type I errors were also compared to those estimated by using the meta-analysis t-test among the same simulated datasets. Results from this simulation study show that, compared to the meta-analysis t-test commonly used for data with normally distributed observations, the hybrid statistic has a greater power for data observed from normally, log-normally, and multinomially distributed random variables with matched and unmatched subjects and with outliers. Powers rose with the increase in sample size, effect size, and correlation coefficient for the matched pairs. In addition, lower type I errors were observed estimated by using the hybrid statistic, which indicates that this test is also conservative for data with outliers in the interim analysis of clinical trials.^
Resumo:
BACKGROUND: General anesthesia in adult humans is associated with narrowing or complete closure of the pharyngeal airway. The purpose of this study was to determine the effect of progressive mandibular advancement on pharyngeal airway size in normal adults during intravenous infusion of propofol for anesthesia. METHODS: Magnetic resonance imaging was performed in nine normal adults during wakefulness and during propofol anesthesia. A commercially available intraoral appliance was used to manually advance the mandible. Images were obtained during wakefulness without the appliance and during anesthesia with the participants wearing the appliance under three conditions: without mandibular advancement, advancement to 50% maximum voluntary advancement, and maximum advancement. Using computer software, airway area and maximum anteroposterior and lateral airway diameters were measured on the axial images at the level of the soft palate, uvula, tip of the epiglottis, and base of the epiglottis. RESULTS: Airway area across all four airway levels decreased during anesthesia without mandibular advancement compared with airway area during wakefulness (P < 0.007). Across all levels, airway area at 50% advancement during anesthesia was less than that at centric occlusion during wakefulness (P = 0.06), but airway area with maximum advancement during anesthesia was similar to that during wakefulness (P = 0.64). In general, anteroposterior and lateral airway diameters during anesthesia without mandibular advancement were decreased compared with wakefulness and were restored to their wakefulness values with 50% and/or maximal advancement. CONCLUSIONS: Maximum mandibular advancement during propofol anesthesia is required to restore the pharyngeal airway to its size during wakefulness in normal adults.
Resumo:
$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^
Resumo:
The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^