4 resultados para Modeling Techniques
em DigitalCommons@The Texas Medical Center
Resumo:
Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.
Resumo:
Antibodies which bind bioactive ligands can serve as a template for the generation of a second antibody which may react with the physiological receptor. This phenomenon of molecular mimicry by antibodies has been described in a variety of systems. In order to understand the chemical and molecular mechanisms involved in these interactions, monoclonal antibodies directed against two pharmacologically active alkaloids, morphine and nicotine, were carefully studied using experimental and theoretical molecular modeling techniques. The molecular characterization of these antibodies involved binding studies with ligand analogs and determination of the variable region amino acid sequence. A three-dimensional model of the anti-morphine binding site was constructed using computational and graphics display techniques. The antibody response in BALB/c mice to morphine appears relatively restricted, in that all of the antibodies examined in this study contained a $\lambda$ light chain, which is normally found in only 5% of mouse immunoglobulins. This study represents the first use of theoretical and experimental modeling techniques to describe the antigen binding site of a mouse Fv region containing a $\lambda$ light chain. The binding site model indicates that a charged glutamic acid residue and aromatic side chains are key features in ionic and hydrophobic interactions with the ligand morphine. A glutamic acid residue is found in the identical position in the anti-nicotine antibody and may play a role in binding nicotine. ^
Resumo:
Background. Cardiovascular disease (CVD) exhibits the most striking public health significance due to its high prevalence and mortality as well as huge economic burdens all over the world, especially in industrialized countries. Major risk factors of CVDs have been the targets of population-wide prevention in the United States. Economic evaluations provide structured information in regard to the efficiency of resource utilization which can inform decisions of resource allocation. The main purpose of this review is to investigate the pattern of study design of economic evaluations for interventions of CVDs. ^ Methods. Primary journal articles published during 2003-2008 were systematically retrieved via relevant keywords from Medline, NHS Economic Evaluation Database (NHS EED) and EBSCO Academic Search Complete. Only full economic evaluations for narrowly defined CVD interventions were included for this review. The methodological data of interest were extracted from the eligible articles and reorganized in Microsoft Access database. Chi-square tests in SPSS were used to analyze the associations between pairs of categorical data. ^ Results. One hundred and twenty eligible articles were reviewed after two steps of literature selection with explicit inclusion and exclusion criteria. Descriptive statistics were reported regarding the evaluated interventions, outcome measures, unit costing and cost reports. The chi-square test of the association between prevention level of intervention and category of time horizon showed no statistical significance. The chi-square test showed that sponsor type was significantly associated with whether new or standard intervention being concluded as more cost effective. ^ Conclusions. Tertiary prevention and medication interventions are the major interests for economic evaluators. The majority of the evaluations were claimed from either a provider’s or a payer’s perspective. Almost all evaluations adopted gross costing strategy for unit cost data rather than micro costing. EQ-5D is the most commonly used instrument for subjective outcome measurement. More than half of the evaluations used decision analytic modeling techniques. The lack of consistency in study design standards in published evaluations appears in several aspects. Prevention level of intervention is not likely to be a factor for evaluators to decide whether to design an evaluation in a lifetime horizon or not. Published evaluations sponsored by industry are more likely to conclude that new intervention is more cost effective than standard intervention.^
A descriptive and exploratory analysis of occupational injuries at a chemical manufacturing facility
Resumo:
A retrospective study of 1353 occupational injuries occurring at a chemical manufacturing facility in Houston, Texas from January, 1982 through May, 1988 was performed to investigate the etiology of the occupational injury process. Injury incidence rates were calculated for various sub-populations of workers to determine differences in the risk of injury for various groups. Linear modeling techniques were used to determine the association between certain collected independent variables and severity of an injury event. Finally, two sub-groups of the worker population, shiftworkers and injury recidivists, were examined. An injury recidivist as defined is any worker experiencing one or more injury per year. Overall, female shiftworkers evidenced the highest average injury incidence rate compared to all other worker groups analyzed. Although the female shiftworkers were younger and less experienced, the etiology of their increased risk of injury remains unclear, although the rigors of performing shiftwork itself or ergonomic factors are suspect. In general, females were injured more frequently than males, but they did not incur more severe injuries. For all workers, many injuries were caused by erroneous or foregone training, and risk taking behaviors. Injuries of these types are avoidable. The distribution of injuries by severity level was bimodal; either injuries were of minor or major severity with only a small number of cases falling in between. Of the variables collected, only the type of injury incurred and the worker's titlecode were statistically significantly associated with injury severity. Shiftworkers did not sustain more severe injuries than other worker groups. Injury to shiftworkers varied as a 24-hour pattern; the greatest number occurred between 1200-1230 hours, (p = 0.002) by Cosinor analysis. Recidivists made up 3.3% of the population (23 males and 10 females), yet suffered 17.8% of the injuries. Although past research suggests that injury recidivism is a random statistical event, analysis of the data by logistic regression implicates gender, area worked, age and job titlecode as being statistically significantly related to injury recidivism at this facility. ^