4 resultados para Modeling Rapport Using Machine Learning

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project outlined throughout this program management plan aims to develop a health-focused student advocacy group in the San Antonio Independent School District (SAISD). At its core, this project will be an opportunity for SAISD students to engage in service-learning, through which they will learn and develop by designing, organizing and participating in meaningful public health service experiences. ^ This program management plan addresses the genuine need for public health community education by using the service-learning model as a framework to engage students to effect change. The plan delineates the process by which the student advocacy group is to be assembled, selection of service-learning project, project objectives, technical objectives, and communication requirements. Ideally, the plan should help to facilitate project coordination, communication, and planning, and to support the direction of resources. The appendices that follow also provide useful tools with which to follow through with project implementation. ^ The plan is about more than providing a tool to educate students about the health issues in their community. It is about providing a way to teach health advocacy and self-interest and encourage civic engagement via public health. Students have the potential to positively effect lasting change among their peers, in their schools and in the community.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether algorithms developed for the World Wide Web can be applied to the biomedical literature in order to identify articles that are important as well as relevant. DESIGN AND MEASUREMENTS A direct comparison of eight algorithms: simple PubMed queries, clinical queries (sensitive and specific versions), vector cosine comparison, citation count, journal impact factor, PageRank, and machine learning based on polynomial support vector machines. The objective was to prioritize important articles, defined as being included in a pre-existing bibliography of important literature in surgical oncology. RESULTS Citation-based algorithms were more effective than noncitation-based algorithms at identifying important articles. The most effective strategies were simple citation count and PageRank, which on average identified over six important articles in the first 100 results compared to 0.85 for the best noncitation-based algorithm (p < 0.001). The authors saw similar differences between citation-based and noncitation-based algorithms at 10, 20, 50, 200, 500, and 1,000 results (p < 0.001). Citation lag affects performance of PageRank more than simple citation count. However, in spite of citation lag, citation-based algorithms remain more effective than noncitation-based algorithms. CONCLUSION Algorithms that have proved successful on the World Wide Web can be applied to biomedical information retrieval. Citation-based algorithms can help identify important articles within large sets of relevant results. Further studies are needed to determine whether citation-based algorithms can effectively meet actual user information needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction or Statement of Problem: It is often challenging to get students in a large classroom setting actively involved in a classroom discussion. In order to help students appreciate the effects of low immunization rates, a classroom activity was developed using active learning techniques. This allowed the students to identify and appreciate the complexity of the issues concerning childhood immunizations. [See PDF for complete abstract]