9 resultados para Modeling Rapport Using Hidden Markov Models

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely acknowledged in theoretical and empirical literature that social relationships, comprising of structural measures (social networks) and functional measures (perceived social support) have an undeniable effect on health outcomes. However, the actual mechanism of this effect has yet to be clearly understood or explicated. In addition, comorbidity is found to adversely affect social relationships and health related quality of life (a valued outcome measure in cancer patients and survivors). ^ This cross sectional study uses selected baseline data (N=3088) from the Women's Healthy Eating and Living (WHEL) study. Lisrel 8.72 was used for the latent variable structural equation modeling. Due to the ordinal nature of the data, Weighted Least Squares (WLS) method of estimation using Asymptotic Distribution Free covariance matrices was chosen for this analysis. The primary exogenous predictor variables are Social Networks and Comorbidity; Perceived Social Support is the endogenous predictor variable. Three dimensions of HRQoL, physical, mental and satisfaction with current quality of life were the outcome variables. ^ This study hypothesizes and tests the mechanism and pathways between comorbidity, social relationships and HRQoL using latent variable structural equation modeling. After testing the measurement models of social networks and perceived social support, a structural model hypothesizing associations between the latent exogenous and endogenous variables was tested. The results of the study after listwise deletion (N=2131) mostly confirmed the hypothesized relationships (TLI, CFI >0.95, RMSEA = 0.05, p=0.15). Comorbidity was adversely associated with all three HRQoL outcomes. Strong ties were negatively associated with perceived social support; social network had a strong positive association with perceived social support, which served as a mediator between social networks and HRQoL. Mental health quality of life was the most adversely affected by the predictor variables. ^ This study is a preliminary look at the integration of structural and functional measures of social relationships, comorbidity and three HRQoL indicators using LVSEM. Developing stronger social networks and forming supportive relationships is beneficial for health outcomes such as HRQoL of cancer survivors. Thus, the medical community treating cancer survivors as well as the survivor's social networks need to be informed and cognizant of these possible relationships. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this dissertation were to evaluate health outcomes, quality improvement measures, and the long-term cost-effectiveness and impact on diabetes-related microvascular and macrovascular complications of a community health worker-led culturally tailored diabetes education and management intervention provided to uninsured Mexican Americans in an urban faith-based clinic. A prospective, randomized controlled repeated measures design was employed to compare the intervention effects between: (1) an intervention group (n=90) that participated in the Community Diabetes Education (CoDE) program along with usual medical care; and (2) a wait-listed comparison group (n=90) that received only usual medical care. Changes in hemoglobin A1c (HbA1c) and secondary outcomes (lipid status, blood pressure and body mass index) were assessed using linear mixed-models and an intention-to-treat approach. The CoDE group experienced greater reduction in HbA1c (-1.6%, p<.001) than the control group (-.9%, p<.001) over the 12 month study period. After adjusting for group-by-time interaction, antidiabetic medication use at baseline, changes made to the antidiabetic regime over the study period, duration of diabetes and baseline HbA1c, a statistically significant intervention effect on HbA1c (-.7%, p=.02) was observed for CoDE participants. Process and outcome quality measures were evaluated using multiple mixed-effects logistic regression models. Assessment of quality indicators revealed that the CoDE intervention group was significantly more likely to have received a dilated retinal examination than the control group, and 53% achieved a HbA1c below 7% compared with 38% of control group subjects. Long-term cost-effectiveness and impact on diabetes-related health outcomes were estimated through simulation modeling using the rigorously validated Archimedes Model. Over a 20 year time horizon, CoDE participants were forecasted to have less proliferative diabetic retinopathy, fewer foot ulcers, and reduced numbers of foot amputations than control group subjects who received usual medical care. An incremental cost-effectiveness ratio of $355 per quality-adjusted life-year gained was estimated for CoDE intervention participants over the same time period. The results from the three areas of program evaluation: impact on short-term health outcomes, quantification of improvement in quality of diabetes care, and projection of long-term cost-effectiveness and impact on diabetes-related health outcomes provide evidence that a community health worker can be a valuable resource to reduce diabetes disparities for uninsured Mexican Americans. This evidence supports formal integration of community health workers as members of the diabetes care team.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that short-term sensitization of the Aplysia siphon-withdrawal reflex circuit results in multiple sites of change in synaptic efficacy. In this dissertation I have used a realistic modeling approach (using an integrate-and-fire scheme), in conjunction with electrophysiological experiments, to evaluate the contribution of each site of plasticity to the sensitized response.^ This dissertation contains a detailed description of methodology for the construction of the model circuit, consisting of the LFS motor neurons and ten interneurons known to convey excitatory input to them. The model replicates closely the natural motor neuron firing response to a brief tactile stimulus.^ The various circuit elements have different roles for producing circuit output. For example, the sensory connections onto the motor neuron are important for the production of the phasic response, while the polysynaptic interneuronal connections are important for producing the tonic response.^ The multiple sites of plasticity that produce changes in circuit output also have specialized roles. Presynaptic facilitation of the sensory neuron to LFS connection enhances only the phasic component of the motor neuron firing response. The sensory neuron to interneuron connections primarily enhance the tonic component of the motor neuron firing response. Also, the L29 posttetanic potentiation and the L30 presynaptic inhibition primarily enhance the tonic component of the motor neuron firing response. Finally, the information content at the various sites of plasticity can shift with changes in stimulus intensity. This suggests that while the sites of plasticity encoding memory are fixed, the information content at these sites can be dynamic, shifting in anatomical location with changes in the intensity of the test stimulus.^ These sites of plasticity also produce specific changes in the behavioral response. Sensory-LFS plasticity selectively increases the amplitude of the behavioral response, and has no effect on the duration of the behavioral response. Interneuronal plasticity (L29 and L30) affects both the amplitude and duration of the behavioral response. Other sensory plasticity also affect both the amplitude and duration of the behavioral response, presumably by increasing the recruitment of the interneurons, which provide all of the effect on duration of the behavioral response. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer (PrCa) is a leading cause of morbidity and mortality, yet the etiology remains uncertain. Meta-analyses show that PrCa risk is reduced by 16% in men with type 2 diabetes (T2D), but the mechanism is unknown. Recent genome-wide association studies and meta-analyses have found single nucleotide polymorphisms (SNPs) that consistently predict T2D risk. We evaluated associations of incident PrCa with 14 T2D SNPs in the Atherosclerosis Risk in Communities (ARIC) study. From 1987-2000, there were 397 incident PrCa cases ascertained from state or local cancer registries among 6,642 men (1,560 blacks and 5,082 whites) aged 45-64 years at baseline. Genotypes were determined by TaqMan assay. Cox proportional hazards models were used to assess the association between PrCa and increasing number of T2D risk-raising alleles for individual SNPs and for genetic risk scores (GRS) comprised of the number of T2D risk-raising alleles across SNPs. Two-way gene-gene interactions were evaluated with likelihood ratio tests. Using additive genetic models, the T2D risk-raising allele was associated with significantly reduced risk of PrCa for IGF2BP2 rs4402960 (hazard ratio [HR]=0.79; P=0.07 among blacks only), SLC2A2 rs5400 (race-adjusted HR=0.85; P=0.05) and UCP2 rs660339 (race-adjusted HR=0.84; P=0.02), but significantly increased risk of PrCa for CAPN10 rs3792267 (race-adjusted HR=1.20; P=0.05). No other SNPs were associated with PrCa using an additive genetic model. However, at least one copy of the T2D risk-raising allele for TCF7L2 rs7903146 was associated with reduced PrCa risk using a dominant genetic model (race-adjusted HR=0.79; P=0.03). These results imply that the T2D-PrCa association may be partly due to shared genetic variation, but these results should be verified since multiple tests were performed. When the combined, additive effects of these SNPs were tested using a GRS, there was nearly a 10% reduction in risk of PrCa per T2D risk-raising allele (race-adjusted HR=0.92; P=0.02). SNPs in IGF2BP2, KCNJ11 and SLC2A2 were also involved in multiple synergistic gene-gene interactions on a multiplicative scale. In conclusion, it appears that the T2D-PrCa association may be due, in part, to common genetic variation. Further knowledge of T2D gene-PrCa mechanisms may improve understanding of PrCa etiology and may inform PrCa prevention and treatment.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). The quality of the inferences about copy number can be affected by many factors including batch effects, DNA sample preparation, signal processing, and analytical approach. Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP genotyping data. However, these algorithms lack specificity to detect small CNVs due to the high false positive rate when calling CNVs based on the intensity values. Association tests based on detected CNVs therefore lack power even if the CNVs affecting disease risk are common. In this research, by combining an existing Hidden Markov Model (HMM) and the logistic regression model, a new genome-wide logistic regression algorithm was developed to detect CNV associations with diseases. We showed that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than an existing popular algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.^