6 resultados para Model of curriculum development

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stroke is the third leading cause of death and a major debilitating disease in the United States. Multiple factors, including genetic factors, contribute to the development of the disease. Genome-wide association studies (GWAS) have contributed to the identification of genetic loci influencing risk for complex diseases, such as stroke. In 2010, a GWAS of incident stroke was performed in four large prospective cohorts from the USA and Europe and identified an association of two Single Nucleotide Polymorphisms (SNPs) on chromosome 12p13 with a greater risk of ischemic stroke in individuals of European and African-American ancestry. These SNPs are located 11 Kb upstream of the nerve injury-induced gene 2, Ninjurin2 (NINJ2), suggesting that this gene may be involved in stroke pathogenesis. NINJ2 is a cell adhesion molecule induced in the distal glial cells from a sciatic-nerve injury at 7-days after injury. In an effort to ascribe a possible role of NINJ2 in stroke, we have assessed changes in the level of gene and protein expression of NINJ2 following a time-course from a transiently induced middle cerebral artery ischemic stroke in mice brains. We report an increase in the gene expression of NINJ2 in the ischemic and peri-infarct (ipsilateral) cortical tissues at 7 and 14-days after stroke. We also report an increase in the protein expression of NINJ2 in the cortex of both the ipsilateral and contralateral cortical tissues at the same time-points. We conclude that the expression of NINJ2 is regulated by an ischemic stroke in the cortex and is consistent with NINJ2 being involved in the recovery time-points of stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public preferences for policy are formed in a little-understood process that is not adequately described by traditional economic theory of choice. In this paper I suggest that U.S. aggregate support for health reform can be modeled as tradeoffs among a small number of behavioral values and the stage of policy development. The theory underlying the model is based on Samuelson, et al.'s (1986) work and Wilke's (1991) elaboration of it as the Greed/Efficiency/Fairness (GEF) hypothesis of motivation in the management of resource dilemmas, and behavioral economics informed by Kahneman and Thaler's prospect theory. ^ The model developed in this paper employs ordered probit econometric techniques applied to data derived from U.S. polls taken from 1990 to mid-2003 that measured support for health reform proposals. Outcome data are four-tiered Likert counts; independent variables are dummies representing the presence or absence of operationalizations of each behavioral variable, along with an integer representing policy process stage. Marginal effects of each independent variable predict how support levels change on triggering that variable. Model estimation results indicate a vanishingly small likelihood that all coefficients are zero and all variables have signs expected from model theory. ^ Three hypotheses were tested: support will drain from health reform policy as it becomes increasingly well-articulated and approaches enactment; reforms appealing to fairness through universal health coverage will enjoy a higher degree of support than those targeted more narrowly; health reforms calling for government operation of the health finance system will achieve lower support than those that do not. Model results support the first and last hypotheses. Contrary to expectations, universal health care proposals did not provide incremental support beyond those targeted to “deserving” populations—children, elderly, working families. In addition, loss of autonomy (e.g. restrictions on choice of care giver) is found to be the “third rail” of health reform with significantly-reduced support. When applied to a hypothetical health reform in which an employer-mandated Medical Savings Account policy is the centerpiece, the model predicts support that may be insufficient to enactment. These results indicate that the method developed in the paper may prove valuable to health policy designers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and diabetes are metabolic disorders associated with fatty acid availability in excess of the tissues' capacity for fatty acid oxidation. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in skeletal muscle insulin resistance. My dissertation will present work to test the overall hypothesis that "western" and high fat diets differentially affect cardiac and skeletal muscle fatty acid oxidation, the expression of fatty acid responsive genes, and cardiac contractile function. Wistar rats were fed a low fat, "western," or high fat (10%, 45%, or 60% calories from fat, respectively) diet for acute (1 day to 1 week), short (4 to 8 weeks), intermediate (16 to 24 weeks), or long (32 to 48 weeks) term. With high fat diet, cardiac oleate oxidation increased at all time points investigated. In contrast, with western diet cardiac oleate oxidation increased in the acute, short and intermediate term, but not in the long term. Consistent with a maladaptation of fatty acid oxidation, cardiac power (measured ex vivo) decreased with long term western diet only. In contrast to the heart, soleus muscle oleate oxidation increased only in the acute and short term with either western or high fat feeding. Transcript analysis revealed that several fatty acid responsive genes, including pyruvate dehydrogenase kinase 4, uncoupling protein 3, mitochondrial thioesterase 1, and cytosolic thioesterase 1 increased in heart and soleus muscle to a greater extent with high fat diet, versus western diet, feeding. In conclusion, the data implicate inadequate induction of a cassette of fatty acid responsive genes in both the heart and skeletal muscle by western diet resulting in impaired activation of fatty acid oxidation, and the development of cardiac dysfunction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prominent challenges facing nurse leaders are the growing shortage of nurses and the increasingly complex care required by acutely ill patients. In organizations that shortage is exacerbated by turnover and intent to leave. Unsatisfactory working conditions are cited by nurses when they leave their current jobs. Disengagement from the job leads to plateaued performance, decreased organizational commitment, and increased turnover. Solutions to these challenges include methods both to retain and to increase the effectiveness of each nurse. ^ The specific aim of this study was to examine the relationships among organizational structures thought to foster the clinical development of the nurse, with indicators of the development of clinical expertise, resulting in outcomes of positive job attitudes and effectiveness. Causal loop modeling is incorporated as a systems tool to examine developmental cycles both for an organization and for an individual nurse to look beyond singular events and investigate deeper patterns that emerge over time. ^ The setting is an academic specialty-care institution, and the sample in this cross-sectional study consists of paired data from 225 RNs and their nurse managers. Two panels of survey instruments were created based on the model's theoretical variables, one completed by RNs and the other by their Nurse Managers. The RN survey panel examined the variables of structural empowerment, magnet essentials, knowledge as identified by the Benner developmental stage, psychological empowerment, job stage, engagement, intent to leave, job satisfaction and the early recognition of patient complications. The nurse manager survey panel examined the Benner developmental stage, job stage, and overall level of nursing performance. ^ Four regression models were created based on the outcome variables. Each model identified significant organizational and individual characteristics that predicted higher job satisfaction, decreased intent to leave, more effectiveness as measured by early recognition and acting upon subtle patient complications, and better job performance. ^ Implications for improving job attitudes and effectiveness focus on ways that nursing leaders can foster a more empowering and healthy work environment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary fibrosis is a devastating and lethal lung disease with no current cure. Research into cellular signaling pathways able to modulate aspects of pulmonary inflammation and fibrosis will aid in the development of effective therapies for its treatment. Our laboratory has generated a transgenic/knockout mouse with systemic elevations in adenosine due to the partial lack of its metabolic enzyme, adenosine deaminase (ADA). These mice spontaneously develop progressive lung inflammation and severe pulmonary fibrosis suggesting that aberrant adenosine signaling is influencing the development and/or progression of the disease in these animals. These mice also show marked increases in the pro-fibrotic mediator, osteopontin (OPN), which are reversed through ADA therapy that serves to lower lung adenosine levels and ameliorate aspects of the disease. OPN is known to be regulated by intracellular signaling pathways that can be accessed through adenosine receptors, particularly the low affinity A2BR receptor, suggesting that adenosine receptor signaling may be responsible for the induction of OPN in our model. In-vitro, adenosine and the broad spectrum adenosine receptor agonist, NECA, were able to induce a 2.5-fold increase in OPN transcripts in primary alveolar macrophages. This induction was blocked through antagonism of the A2BR receptor pharmacologically, and through the deletion of the receptor subtype in these cells genetically, supporting the hypothesis that the A2BR receptor was responsible for the induction of OPN in our model. These findings demonstrate for the first time that adenosine signaling is an important modulator of pulmonary fibrosis in ADA-deficient mice and that this is in part due to signaling through the A2BR receptor which leads to the induction of the pro-fibrotic molecule, otseopontin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.