5 resultados para Model Seafood Surveillance Project (U.S.)
em DigitalCommons@The Texas Medical Center
Resumo:
To reach the goals established by the Institute of Medicine (IOM) and the Centers for Disease Control's (CDC) STOP TB USA, measures must be taken to curtail a future peak in Tuberculosis (TB) incidence and speed the currently stagnant rate of TB elimination. Both efforts will require, at minimum, the consideration and understanding of the third dimension of TB transmission: the location-based spread of an airborne pathogen among persons known and unknown to each other. This consideration will require an elucidation of the areas within the U.S. that have endemic TB. The Houston Tuberculosis Initiative (HTI) was a population-based active surveillance of confirmed Houston/Harris County TB cases from 1995–2004. Strengths in this dataset include the molecular characterization of laboratory confirmed cases, the collection of geographic locations (including home addresses) frequented by cases, and the HTI time period that parallels a decline in TB incidence in the United States (U.S.). The HTI dataset was used in this secondary data analysis to implement a GIS analysis of TB cases, the locations frequented by cases, and their association with risk factors associated with TB transmission. ^ This study reports, for the first time, the incidence of TB among the homeless in Houston, Texas. The homeless are an at-risk population for TB disease, yet they are also a population whose TB incidence has been unknown and unreported due to their non-enumeration. The first section of this dissertation identifies local areas in Houston with endemic TB disease. Many Houston TB cases who reported living in these endemic areas also share the TB risk factor of current or recent homelessness. Merging the 2004–2005 Houston enumeration of the homeless with historical HTI surveillance data of TB cases in Houston enabled this first-time report of TB risk among the homeless in Houston. The homeless were more likely to be US-born, belong to a genotypic cluster, and belong to a cluster of a larger size. The calculated average incidence among homeless persons was 411/100,000, compared to 9.5/100,000 among housed. These alarming rates are not driven by a co-infection but by social determinants. The unsheltered persons were hospitalized more days and required more follow-up time by staff than those who reported a steady housing situation. The homeless are a specific example of the increased targeting of prevention dollars that could occur if TB rates were reported for specific areas with known health disparities rather than as a generalized rate normalized over a diverse population. ^ It has been estimated that 27% of Houstonians use public transportation. The city layout allows bus routes to run like veins connecting even the most diverse of populations within the metropolitan area. Secondary data analysis of frequent bus use (defined as riding a route weekly) among TB cases was assessed for its relationship with known TB risk factors. The spatial distribution of genotypic clusters associated with bus use was assessed, along with the reported routes and epidemiologic-links among cases belonging to the identified clusters. ^ TB cases who reported frequent bus use were more likely to have demographic and social risk factors associated with poverty, immune suppression and health disparities. An equal proportion of bus riders and non-bus riders were cultured for Mycobacterium tuberculosis, yet 75% of bus riders were genotypically clustered, indicating recent transmission, compared to 56% of non-bus riders (OR=2.4, 95%CI(2.0, 2.8), p<0.001). Bus riders had a mean cluster size of 50.14 vs. 28.9 (p<0.001). Second order spatial analysis of clustered fingerprint 2 (n=122), a Beijing family cluster, revealed geographic clustering among cases based on their report of bus use. Univariate and multivariate analysis of routes reported by cases belonging to these clusters found that 10 of the 14 clusters were associated with use. Individual Metro routes, including one route servicing the local hospitals, were found to be risk factors for belonging to a cluster shown to be endemic in Houston. The routes themselves geographically connect the census tracts previously identified as having endemic TB. 78% (15/23) of Houston Metro routes investigated had one or more print groups reporting frequent use for every HTI study year. We present data on three specific but clonally related print groups and show that bus-use is clustered in time by route and is the only known link between cases in one of the three prints: print 22. (Abstract shortened by UMI.)^
Resumo:
A census of 925 U.S. colleges and universities offering masters and doctorate degrees was conducted in order to study the number of elements of an environmental management system as defined by ISO 14001 possessed by small, medium and large institutions. A 30% response rate was received with 273 responses included in the final data analysis. Overall, the number of ISO 14001 elements implemented among the 273 institutions ranged from 0 to 16, with a median of 12. There was no significant association between the number of elements implemented among institutions and the size of the institution (p = 0.18; Kruskal-Wallis test) or among USEPA regions (p = 0.12; Kruskal-Wallis test). The proportion of U.S. colleges and universities that reported having implemented a structured, comprehensive environmental management system, defined by answering yes to all 16 elements, was 10% (95% C.I. 6.6%–14.1%); however 38% (95% C.I. 32.0%–43.8%) reported that they had implemented a structured, comprehensive environmental management system, while 30.0% (95% C.I. 24.7%–35.9%) are planning to implement a comprehensive environmental management system within the next five years. Stratified analyses were performed by institution size, Carnegie Classification and job title. ^ The Osnabruck model, and another under development by the South Carolina Sustainable Universities Initiative, are the only two environmental management system models that have been proposed specifically for colleges and universities, although several guides are now available. The Environmental Management System Implementation Model for U.S. Colleges and Universities developed is an adaptation of the ISO 14001 standard and USEPA recommendations and has been tailored to U.S. colleges and universities for use in streamlining the implementation process. In using this implementation model created for the U.S. research and academic setting, it is hoped that these highly specialized institutions will be provided with a clearer and more cost-effective path towards the implementation of an EMS and greater compliance with local, state and federal environmental legislation. ^
Resumo:
Injection drug use is the third most frequent risk factor for new HIV infections in the United States. A dual mode of exposure: unsafe drug using practices and risky sexual behaviors underlies injection drug users' (IDUs) risk for HIV infection. This research study aims to characterize patterns of drug use and sexual behaviors and to examine the social contexts associated with risk behaviors among a sample of injection drug users. ^ This cross-sectional study includes 523 eligible injection drug users from Houston, Texas, recruited into the 2009 National HIV Behavioral Surveillance project. Three separate set of analyses were carried out. First, using latent class analysis (LCA) and maximum likelihood we identified classes of behavior describing levels of HIV risk, from nine drug and sexual behaviors. Second, eight separate multivariable regression models were built to examine the odds of reporting a given risk behavior. We constructed the most parsimonious multivariable model using a manual backward stepwise process. Third, we examined whether HIV serostatus knowledge (self-reported positive, negative, or unknown serostatus) is associated with drug use and sexual HIV risk behaviors. ^ Participants were mostly male, older, and non-Hispanic Black. Forty-two percent of our sample had behaviors putting them at high risk, 25% at moderate risk, and 33% at low risk for HIV infection. Individuals in the High-risk group had the highest probability of risky behaviors, categorized as almost always sharing needles (0.93), seldom using condoms (0.10), reporting recent exchange sex partners (0.90), and practicing anal sex (0.34). We observed that unsafe injecting practices were associated with high risk sexual behaviors. IDUs who shared needles had higher odds of having anal sex (OR=2.89, 95%CI: 1.69-4.92) and unprotected sex (OR=2.66, 95%CI: 1.38-5.10) at last sex. Additionally, homelessness was associated with needle sharing (OR=2.24, 95% CI: 1.34-3.76) and cocaine use was associated with multiple sex partners (OR=1.82, 95% CI: 1.07-3.11). Furthermore, twenty-one percent of the sample was unaware of their HIV serostatus. The three groups were not different from each other in terms of drug-use behaviors: always using a new sterile needle, or in sharing needles or drug preparation equipment. However, IDUs unaware of their HIV serostatus were 33% more likely to report having more than three sexual partners in the past 12 months; 45% more likely to report to have unprotected sex and 85% more likely to use drug and or alcohol during or before at last sex compared to HIV-positive IDUs. ^ This analysis underscores the merit of LCA approach to empirically categorize injection drug users into distinct classes and identify their risk pattern using multiple indicators and our results show considerable overlap of high risk sexual and drug use behaviors among the high-risk class members. The observed clustering pattern of drug and sexual risk behavior among this population confirms that injection drug users do not represent a homogeneous population in terms of HIV risk. These findings will help develop tailored prevention programs.^
Resumo:
Diarrheal disease associated with enterotoxigenic Escherichia coli (ETEC) infection is one of the major public health problems in many developing countries, especially in infants and young children. Because tests suitable for field laboratories have been developed only relatively recently, the literature on the environmental risk factors associated with ETEC is not as complete as for many other pathogens or for diarrhea of unspecified etiology.^ Data from a diarrheal disease surveillance project in rural Egypt in which stool samples were tested for a variety of pathogens, and in which an environmental questionnaire was completed for the same study households, provided an opportunity to test for an association between ETEC and various risk factors present in those households. ETEC laboratory-positive specimens were compared with ETEC laboratory-negative specimens for both symptomatic and asymptomatic children less than three years of age at the individual and household level using a case-comparison design.^ Individual children more likely to have LT infection were those who lived in HHs that had cooked food stored for subsequent consumption at the time of the visit, where caretakers used water but not soap to clean an infant after a diarrheal stool, and that had an indoor, private water source. LT was more common in HHs where the caretaker did not clean an infant with soap after a diarrheal stool, and where a sleeping infant was not covered with a net. At both the individual and HH level, LT was significantly associated with good water supply in terms of quantity and storage.^ ST was isolated more frequently at the individual level where a sleeping infant was covered with a net, where large animals were kept in or around the house, where water was always available and was not potable, and where the water container was not covered. At the HH level, the absence of a toilet or latrine and the indiscriminate disposal of animal waste decreased risk. Using animal feces for fertilizer, the presence of large animals, and poor water quality were associated with ST at both the individual and HH level.^ These findings are mostly consistent with those of other studies, and/or are biologically plausible, with the obvious exception of those from this study where poorer water supplies are associated with less infection, at least in the case of LT. More direct observation of how animal ownership and feces disposal relates to different types of water supply and usage might clarify mechanisms through which some ETEC infection could be prevented in similar settings. ^
Resumo:
Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.