3 resultados para Mobile Robots Dynamic and Kinematic Modelling and Simulation
em DigitalCommons@The Texas Medical Center
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
In order to better take advantage of the abundant results from large-scale genomic association studies, investigators are turning to a genetic risk score (GRS) method in order to combine the information from common modest-effect risk alleles into an efficient risk assessment statistic. The statistical properties of these GRSs are poorly understood. As a first step toward a better understanding of GRSs, a systematic analysis of recent investigations using a GRS was undertaken. GRS studies were searched in the areas of coronary heart disease (CHD), cancer, and other common diseases using bibliographic databases and by hand-searching reference lists and journals. Twenty-one independent case-control studies, cohort studies, and simulation studies (12 in CHD, 9 in other diseases) were identified. The underlying statistical assumptions of the GRS using the experience of the Framingham risk score were investigated. Improvements in the construction of a GRS guided by the concept of composite indicators are discussed. The GRS will be a promising risk assessment tool to improve prediction and diagnosis of common diseases.^