4 resultados para Mixed-mode end load split

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this prospective observational field study was to present a model for measuring energy expenditure among nurses and to determine if there was a difference between the energy expenditure of nurses providing direct care to adult patients on general medical-surgical units in two major metropolitan hospitals and a recommended energy expenditure of 3.0 kcal/minute over 8 hours. One-third of the predicted cycle ergometer VO2max for the study population was used to calculate the recommended energy expenditure.^ Two methods were used to measure energy expenditure among participants during an 8 hour day shift. First, the Energy Expenditure Prediction Program (EEPP) developed by the University of Michigan Center for Ergonomics was used to calculate energy expenditure using activity recordings from observation (OEE; n = 39). The second method used ambulatory electrocardiography and the heart rate-oxygen consumption relationship (HREE; n = 20) to measure energy expenditure. It was concluded that energy expenditure among nurses can be estimated using the EEPP. Using classification systems from previous research, work load among the study population was categorized as "moderate" but was significantly less than (p = 0.021) 3.0 kcal/minute over 8 hours or 1/3 of the predicted VO2max.^ In addition, the relationships between OEE, body-part discomfort (BPCDS) and mental work load (MWI) were evaluated. The relationships between OEE/BPCDS and OEE/MWI were not significant (p = 0.062 and 0.091, respectively). Among the study population, body-part discomfort significantly increased for upper arms, mid-back, lower-back, legs and feet by mid-shift and by the end of the shift, the increase was also significant for neck and thighs.^ The study also provided documentation of a comprehensive list of nursing activities. Among the most important findings were the facts that the study population spent 23% of the workday in a bent posture, walked an average of 3.14 miles, and spent two-thirds of the shift doing activities other than direct patient care, such as paperwork and communicating with other departments. A discussion is provided regarding the ergonomic implications of these findings. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-sectional designs, longitudinal designs in which a single cohort is followed over time, and mixed-longitudinal designs in which several cohorts are followed for a shorter period are compared by their precision, potential for bias due to age, time and cohort effects, and feasibility. Mixed longitudinal studies have two advantages over longitudinal studies: isolation of time and age effects and shorter completion time. Though the advantages of mixed-longitudinal studies are clear, choosing an optimal design is difficult, especially given the number of possible combinations of the number of cohorts and number of overlapping intervals between cohorts. The purpose of this paper is to determine the optimal design for detecting differences in group growth rates.^ The type of mixed-longitudinal study appropriate for modeling both individual and group growth rates is called a "multiple-longitudinal" design. A multiple-longitudinal study typically requires uniform or simultaneous entry of subjects, who are each observed till the end of the study.^ While recommendations for designing pure-longitudinal studies have been made by Schlesselman (1973b), Lefant (1990) and Helms (1991), design recommendations for multiple-longitudinal studies have never been published. It is shown that by using power analyses to determine the minimum number of occasions per cohort and minimum number of overlapping occasions between cohorts, in conjunction with a cost model, an optimal multiple-longitudinal design can be determined. An example of systolic blood pressure values for cohorts of males and cohorts of females, ages 8 to 18 years, is given. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^