8 resultados para Mitochondrial Pathology

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased glycolysis and oxidative stress are common features of cancer cells. These metabolic alterations are associated with mitochondrial dysfunction and can be caused by mitochondrial DNA (mtDNA) mutations, oncogenic signals, loss of tumor suppressor, and tumor tissue hypoxia. It is well established that mitochondria play central roles in energy metabolism, maintenance of redox balance, and regulation of apoptosis. However, the biochemical and molecular mechanisms that maintain high glycolysis in cancer cells (the Warburg effect) with mitochondrial dysfunction and oxidative stress remain to be determined. The major goals of this study were to establish a unique experimental system in which the mitochondrial respiratory function can be regulated as desired, and to use this system to investigate the mechanistic link between mitochondrial dysfunction and the Warburg effect along with oxidative stress in cancer cells. To achieve these goals, I have established a tetracycline-inducible system in which a dominant negative form of mitochondrial DNA polymerase y (POLGdn) expression could be regulated by tetracycline; thus controlling mitochondrial respiratory function. Using this cell system, I demonstrated that POLGdn expression resulted in mitochondrial dysfunction through decreasing mtDNA content, depletion of mtDNA encoded mRNA and protein expression. This process was mediated by TFAM proteasome degradation. Mitochondrial dysfunction mediated by POLGdn expression led to a significant increase in cellular glycolysis and oxidative stress. Surprisingly, mitochondrial dysfunction also resulted in increased NAD(P)H oxidase (NOX) enzyme activity, which was shown to be essential for maintaining high glycolysis. Chemical Inhibition of NOX activity by diphenyliodonium (DPI) preferentially impacted the survival of mitochondrial defective cells. The colon cancer HCT116-/- cells that have lost transcriptional regulation of the mitochondrial assembling enzyme SCO2, leading to compromised mitochondrial respiratory function, were found to have increased NOX activity and were highly sensitive to DPI treatment. Ovarian epithelial cells with Ras transformation also exhibited an increase in NOX gene expression and NOX enzyme activity, rendering the cells sensitive to DPI inhibition especially under hypoxic condition. These data together suggest that NOX plays a novel role in maintaining high glycolysis in cancer cells with mitochondrial defects, and that NOX may be a potential target for cancer therapy. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Missense mutations in smooth muscle cell (SMC) specific ACTA2 (á-actin) and MYH11 (â-myosin heavy chain) cause diffuse and diverse vascular diseases, including thoracic aortic aneurysms and dissections (TAAD) and early onset coronary artery disease and stroke. The mechanism by which these mutations lead to dilatation of some arteries but occlusion of others is unknown. We hypothesized that the mutations act through two distinct mechanisms to cause varied vascular diseases: a loss of function, leading to decreased SMC contraction and aneurysms, and a gain of function, leading to increased SMC proliferation and occlusive disease. To test this hypothesis, ACTA2 mutant SMCs and myofibroblasts were assessed and found to not form á-actin filaments whereas control cells did, suggesting a dominant negative effect of ACTA2 mutations on filament formation. A loss of á-actin filaments would be predicted to cause decreased SMC contractility. Histological examination of vascular tissues from patients revealed SMC hyperplasia leading to arterial stenosis and occlusion, supporting a gain of function associated with the mutant gene. Furthermore, ACTA2 mutant SMCs and myofibroblasts proliferated more rapidly in static culture than control cells (p<0.05). We also determined that Acta2-/- mice have ascending aortic aneurysms. Histological examination revealed aortic medial SMC hyperplasia, but minimal features of medial degeneration. Acta2-/- SMCs proliferated more rapidly in culture than wildtype (p<0.05), and microarray analysis of Acta2-/- SMCs revealed increased expression of Actg2, 15 collagen genes, and multiple focal adhesion genes. Acta2-/- SMCs showed altered localization of vinculin and zyxin and increased phosphorylated focal adhesion kinase (FAK) in focal adhesions. A specific FAK inhibitor decreased Acta2-/- SMC proliferation to levels equal to wildtype SMCs (p<0.05), suggesting that FAK activation leads to the increased proliferation. We have described a unique pathology associated with ACTA2 and MYH11 mutations, as well as an aneurysm phenotype in Acta2-/- mice. Additionally, we identified a novel pathogenic pathway for vascular occlusive disease due to loss of SMC contractile filaments, alterations in focal adhesions, and activation of FAK signaling in SMCs with ACTA2 mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was comparing the accuracy of capturing the oral pathology diagnoses among different coding systems. 55 diagnoses were selected for comparison among 5 coding systems. The results of accuracy in capturing oral diagnoses are: AFIP (96.4%), followed by Read 99 (85.5%), SNOMED 98 (74.5%), ICD-9 (43.6%), and CDT-3 (14.5%). It shows that the currently used coding systems, ICD-9 and CDT-3, were inadequate, whereas the AFIP coding system captured the majority of oral diagnoses. In conclusion, the most commonly used medical and dental coding systems lack terms for the diagnosis of oral and dental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a locally aggressive collagenous myofibroblastic neoplasm of the mandible in an 18-year-old male. Clinically, the lesion presented with rapid growth and irregular mandibular bone destruction. Grossly, the tumor was 10 cm in greatest dimension, light-tan, firm, and involving the posterior one-thirds of the body and inferior half of the left mandibular ramus. Histologically, the lesion was composed of a loose spindle cell proliferation interspersed with periodic dense bands of collagen. The spindle cells reacted positively to smooth muscle actin, calponin, and focally to desmin and were negative for S-100, pan-cytokeratin, CD99, CD34 and caldesmon, supporting myofibroblastic derivation. At our 4 year follow-up, the patient remained free of local recurrence and surgery related complications. The clinicopathologic findings and the differential diagnosis of this lesion is presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.