9 resultados para Misclassification
em DigitalCommons@The Texas Medical Center
Resumo:
Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^
Resumo:
A graphing method was developed and tested to estimate gestational ages pre-and postnatally in a consistent manner for epidemiological research and clinical purposes on feti/infants of women with few consistent prenatal estimators of gestational age. Each patient's available data was plotted on a single page graph to give a comprehensive overview of that patient. A hierarchical classification of gestational age determination was then applied in a systematic manner, and reasonable gestational age estimates were produced. The method was tested for validity and reliability on 50 women who had known dates for their last menstrual period or dates of conception, and multiple ultrasound examinations and other gestational age estimating measures. The feasibility of the procedure was then tested on 1223 low income women with few gestational age estimators. The graphing method proved to have high inter- and intrarater reliability. It was quick, easy to use, inexpensive, and did not require special equipment. The graphing method estimate of gestational age for each infant was tested against the last menstrual period gestational age estimate using paired t-Tests, F tests and the Kolmogorov-Smirnov test of similar populations, producing a 98 percent probability or better that the means and data populations were the same. Less than 5 percent of the infants' gestational ages were misclassified using the graphing method, much lower than the amount of misclassification produced by ultrasound or neonatal examination estimates. ^
Resumo:
Southeast Texas, including Houston, has a large presence of industrial facilities and has been documented to have poorer air quality and significantly higher cancer rates than the remainder of Texas. Given citizens’ concerns in this 4th largest city in the U.S., Mayor Bill White recently partnered with the UT School of Public Health to determine methods to evaluate the health risks of hazardous air pollutants (HAPs). Sexton et al. (2007) published a report that strongly encouraged analytic studies linking these pollutants with health outcomes. In response, we set out to complete the following aims: 1. determine the optimal exposure assessment strategy to assess the association between childhood cancer rates and increased ambient levels of benzene and 1,3-butadiene (in an ecologic setting) and 2. evaluate whether census tracts with the highest levels of benzene or 1,3-butadiene have higher incidence of childhood lymphohematopoietic cancer compared with census tracts with the lowest levels of benzene or 1,3-butadiene, using Poisson regression. The first aim was achieved by evaluating the usefulness of four data sources: geographic information systems (GIS) to identify proximity to point sources of industrial air pollution, industrial emission data from the U.S. EPA’s Toxic Release Inventory (TRI), routine monitoring data from the U.S. EPA Air Quality System (AQS) from 1999-2000 and modeled ambient air levels from the U.S. EPA’s 1999 National Air Toxic Assessment Project (NATA) ASPEN model. Further, once these four data sources were evaluated, we narrowed them down to two: the routine monitoring data from the AQS for the years 1998-2000 and the 1999 U.S. EPA NATA ASPEN modeled data. We applied kriging (spatial interpolation) methodology to the monitoring data and compared the kriged values to the ASPEN modeled data. Our results indicated poor agreement between the two methods. Relative to the U.S. EPA ASPEN modeled estimates, relying on kriging to classify census tracts into exposure groups would have caused a great deal of misclassification. To address the second aim, we additionally obtained childhood lymphohematopoietic cancer data for 1995-2004 from the Texas Cancer Registry. The U.S. EPA ASPEN modeled data were used to estimate ambient levels of benzene and 1,3-butadiene in separate Poisson regression analyses. All data were analyzed at the census tract level. We found that census tracts with the highest benzene levels had elevated rates of all leukemia (rate ratio (RR) = 1.37; 95% confidence interval (CI), 1.05-1.78). Among census tracts with the highest 1,3-butadiene levels, we observed RRs of 1.40 (95% CI, 1.07-1.81) for all leukemia. We detected no associations between benzene or 1,3-butadiene levels and childhood lymphoma incidence. This study is the first to examine this association in Harris and surrounding counties in Texas and is among the first to correlate monitored levels of HAPs with childhood lymphohematopoietic cancer incidence, evaluating several analytic methods in an effort to determine the most appropriate approach to test this association. Despite recognized weakness of ecologic analyses, our analysis suggests an association between childhood leukemia and hazardous air pollution.^
Resumo:
Studies on the relationship between psychosocial determinants and HIV risk behaviors have produced little evidence to support hypotheses based on theoretical relationships. One limitation inherent in many articles in the literature is the method of measurement of the determinants and the analytic approach selected. ^ To reduce the misclassification associated with unit scaling of measures specific to internalized homonegativity, I evaluated the psychometric properties of the Reactions to Homosexuality scale in a confirmatory factor analytic framework. In addition, I assessed the measurement invariance of the scale across racial/ethnic classifications in a sample of men who have sex with men. The resulting measure contained eight items loading on three first-order factors. Invariance assessment identified metric and partial strong invariance between racial/ethnic groups in the sample. ^ Application of the updated measure to a structural model allowed for the exploration of direct and indirect effects of internalized homonegativity on unprotected anal intercourse. Pathways identified in the model show that drug and alcohol use at last sexual encounter, the number of sexual partners in the previous three months and sexual compulsivity all contribute directly to risk behavior. Internalized homonegativity reduced the likelihood of exposure to drugs, alcohol or higher numbers of partners. For men who developed compulsive sexual behavior as a coping strategy for internalized homonegativity, there was an increase in the prevalence odds of risk behavior. ^ In the final stage of the analysis, I conducted a latent profile analysis of the items in the updated Reactions to Homosexuality scale. This analysis identified five distinct profiles, which suggested that the construct was not homogeneous in samples of men who have sex with men. Lack of prior consideration of these distinct manifestations of internalized homonegativity may have contributed to the analytic difficulty in identifying a relationship between the trait and high-risk sexual practices. ^
Resumo:
Recent studies have reported positive associations between maternal exposures to air pollutants and several adverse birth outcomes. However, there have been no assessments of the association between environmental hazardous air pollutants (HAPs) such as benzene, toluene, ethylbenzene, and xylene (BTEX) and neural tube defects (NTDs) a common and serious group of congenital malformations. Before examining this association, two important methodological questions must be addressed: (1) is maternal residential movement likely to result in exposure misclassification and (2) is it appropriate to lump defects of the neural tube, such as anencephaly and spina bifida, into a composite disease endpoint (i.e., NTDs). ^ Data from the National Birth Defects Prevention Study and Texas Birth Defects Registry were used to: (1) assess the extent to which change of residence may result in exposure misclassification when exposure is based on the address at delivery; (2) formally assess heterogeneity of the associations between known risk factors for NTDs, using polytomous logistic regression; and (3) conduct a case-control study assessing the association between ambient air levels of BTEX and the risk of NTDs among offspring. ^ Regarding maternal residential mobility, this study suggests address at delivery was not significantly different from using address at conception when assigning quartile of benzene exposure (OR 1.0, 95% CI 0.9, 1.3). On the question of effect heterogeneity among NTDs, the effect estimates for infant sex P = 0.017), maternal body mass index P = 0.016), and folate supplementation P = 0.050) were significantly different for anencephaly and spina bifida, suggesting it is often more appropriate to assess potential risk factors among subgroups of NTDs. For the main study question on the association between environmental HAPs and NTDs, mothers who have offspring with isolated spina bifida are 2.4 times likely to live in areas with the highest benzene levels (95% CI 1.1, 5.0). However, no other significant associations were observed.^ This project is the first to include not only an assessment of the relationship between environmental levels of BTEX and NTDs, but also two separate studies addressing important methodological issues associated with this question. Our results contribute to the growing body of evidence regarding air pollutant exposure and adverse birth outcomes. ^
Resumo:
Accurate ascertainment of risk factors and disease status is vital in public health research for proper classification of research subjects. The two most common ways of obtaining this data is by self-report and review of medical records (MRs). South Texas Women’s Health Project was a case-control study looking at interrelationships between hormones, diet, and body size and breast cancer among Hispanic women 30-79 years of age. History of breast cancer, diabetes mellitus (DM) and use of DM medications was ascertained from a personal interview. At the time of interview, the subject identified her major health care providers and signed the medical records release form, which was sent to the designated providers. The MRs were reviewed to confirm information obtained from the interview.^ Aim of this study was to determine the sensitivity and specificity between MRs and personal interview in diagnosis of breast cancer, DM and DM treatment. We also wanted to assess how successful our low-cost approach was in obtaining pertinent MRs and what factors influenced the quality of MR or interview data. Study sample was 721 women with both self-report and MR data available by June 2007. Overall response rate for MR requests was 74.5%. MRs were 80.9% sensitive and 100% specific in confirming breast cancer status. Prevalence of DM was 22.7% from the interviews and 16% from MRs. MRs did not provide definite information about DM status of 53.6% subjects. Sensitivity and specificity of MRs for DM status was 88.9% and 90.4% respectively. Disagreement on DM status from the two sources was seen in 15.9% subjects. This discordance was more common among older subjects, those who were married and were predominantly Spanish speaking. Income and level of education did not have a statistically significantly association with this disagreement.^ Both self-report and MRs underestimate the prevalence of DM. Relying solely on MRs leads to greater misclassification than relying on self-report data. MRs have good to excellent specificity and thus serve as a good tool to confirm information obtained from self-report. Self-report and MRs should be used in a complementary manner for accurate assessment of DM and breast cancer status.^
Resumo:
Additive and multiplicative models of relative risk were used to measure the effect of cancer misclassification and DS86 random errors on lifetime risk projections in the Life Span Study (LSS) of Hiroshima and Nagasaki atomic bomb survivors. The true number of cancer deaths in each stratum of the cancer mortality cross-classification was estimated using sufficient statistics from the EM algorithm. Average survivor doses in the strata were corrected for DS86 random error ($\sigma$ = 0.45) by use of reduction factors. Poisson regression was used to model the corrected and uncorrected mortality rates with covariates for age at-time-of-bombing, age at-time-of-death and gender. Excess risks were in good agreement with risks in RERF Report 11 (Part 2) and the BEIR-V report. Bias due to DS86 random error typically ranged from $-$15% to $-$30% for both sexes, and all sites and models. The total bias, including diagnostic misclassification, of excess risk of nonleukemia for exposure to 1 Sv from age 18 to 65 under the non-constant relative projection model was $-$37.1% for males and $-$23.3% for females. Total excess risks of leukemia under the relative projection model were biased $-$27.1% for males and $-$43.4% for females. Thus, nonleukemia risks for 1 Sv from ages 18 to 85 (DRREF = 2) increased from 1.91%/Sv to 2.68%/Sv among males and from 3.23%/Sv to 4.02%/Sv among females. Leukemia excess risks increased from 0.87%/Sv to 1.10%/Sv among males and from 0.73%/Sv to 1.04%/Sv among females. Bias was dependent on the gender, site, correction method, exposure profile and projection model considered. Future studies that use LSS data for U.S. nuclear workers may be downwardly biased if lifetime risk projections are not adjusted for random and systematic errors. (Supported by U.S. NRC Grant NRC-04-091-02.) ^
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^
Resumo:
Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^