5 resultados para Minneapolis, Minnesota.
em DigitalCommons@The Texas Medical Center
Resumo:
In 1941 the Texas Legislature appropriated $500,000 to the Board of Regents of the University of Texas to establish a cancer research hospital. The M. D. Anderson Foundation offered to match the appropriation with a grant of an equal sum and to provide a permanent site in Houston. In August, 1942 the Board of Regent of the University and the Trustees of the Foundation signed an agreement to embark on this project. This institution was to be the first one in the medical center, which was incorporated in October, 1945. The Board of Trustees of the Texas Medical Center commissioned a hospital survey to: - Define the needed hospital facilities in the area - Outline an integrated program to meet these needs - Define the facilities to be constructed - Prepare general recommendations for efficient progress The Hospital Study included information about population, hospitals, and other health care and education facilities in Houston and Harris County at that time. It included projected health care needs for future populations, education needs, and facility needs. It also included detailed information on needs for chronic illnesses, a school of public health, and nursing education. This study provides valuable information about the general population and the state of medicine in Houston and Harris County in the 1940s. It gives a unique perspective on the anticipated future as civic leaders looked forward in building the city and region. This document is critical to an understanding of the Texas Medical Center, Houston and medicine as they are today. SECTIONS INCLUDE: Abstract The Abstract was a summary of the 400 page document including general information about the survey area, community medical assets, and current and projected medical needs which the Texas Medical Center should meet. The 123 recommendations were both general (e.g., 12. “That in future planning, the present auxiliary department of the larger hospitals be considered inadequate to carry an added teaching research program of any sizable scope.”) and specific (e.g., 22. That 14.3% of the total acute bed requirement be allotted for obstetric care, reflecting a bed requirement of 522 by 1950, increasing to 1,173 by 1970.”) Section I: Survey Area This section basically addressed the first objective of the survey: “define the needed hospital facilities in the area.” Based on the admission statistics of hospitals, Harris County was included in the survey, with the recognition that growth from out-lying regional areas could occur. Population characteristics and vital statistics were included, with future trends discussed. Each of the hospitals in the area and government and private health organizations, such as the City-County Welfare Board, were documented. Statistics on the facilities use and capacity were given. Eighteen recommendations and observations on the survey area were given. Section II: Community Program This section basically addressed the second objective of the survey: “outline an integrated program to meet these needs.” The information from the Survey Area section formed the basis of the plans for development of the Texas Medical Center. In this section, specific needs, such as what medical specialties were needed, the location and general organization of a medical center, and the academic aspects were outlined. Seventy-four recommendations for these plans were provided. Section III: The Texas Medical Center The third and fourth objectives are addressed. The specific facilities were listed and recommendations were made. Section IV: Special Studies: Chronic Illness The five leading causes of death (heart disease, cancer, “apoplexy”, nephritis, and tuberculosis) were identified and statistics for morbidity and mortality provided. Diagnostic, prevention and care needs were discussed. Recommendations on facilities and other solutions were made. Section IV: Special Studies: School of Public Health An overview of the state of schools of public health in the US was provided. Information on the direction and need of this special school was also provided. Recommendations on development and organization of the proposed school were made. Section IV: Special Studies: Needs and Education Facilities for Nurses Nursing education was connected with hospitals, but the changes to academic nursing programs were discussed. The needs for well-trained nurses in an expanded medical environment were anticipated to result in significant increased demands of these professionals. An overview of the current situation in the survey area and recommendations were provided. Appendix A Maps, tables and charts provide background and statistical information for the previous sections. Appendix B Detailed census data for specific areas of the survey area in the report were included. Sketches of each of the fifteen hospitals and five other health institutions showed historical information, accreditations, staff, available facilities (beds, x-ray, etc.), academic capabilities and financial information.
Resumo:
The Renin-Angiotensin system (RAS) regulates blood pressure through its effects on vascular tone, renal hemodynamics, and renal sodium and fluid balance. The genes encoding the four major components of the RAS, angiotensinogen, renin, angiotensin I-converting enzyme (ACE), and angiotensin II receptor type 1 (AT1), have been investigated as candidate genes in the pathogenesis of essential hypertension. However, studies have primarily focused on small samples of diseased individuals, and, therefore, have provided little information about the determinants of interindividual variation in blood pressure (BP) in the general population.^ Using data from a large population-based sample from Rochester, MN, I have evaluated the contribution of variation in the region of the RAS genes to interindividual variation in systolic, diastolic, and mean arterial pressure in the population-at-large. Marker genotype data from four polymorphisms located within or very near these genes were first collected on 3,974 individuals from 583 randomly ascertained three-generation pedigrees. Haseman-Elston regression and variance component methods of linkage analysis were then carried out to estimate the proportion of interindividual variance in BP attributable to the effects of variation at these four measured loci.^ A significant effect of the ACE locus on interindividual variation in mean arterial pressure (MAP) was detected in a sample of siblings belonging to the youngest generation. After allowing for measured covariates, this effect accounted for 15-25% of the interindividual variance in MAP, and was even greater in a subset with a positive family history of hypertension. When gender-specific analyses were carried out, this effect was significant in males but not in females. Extended pedigree analyses also provided evidence for an effect of the ACE locus on interindividual variation in MAP, but no difference between males and females was observed. Circumstantial evidence suggests that the ACE gene itself may be responsible for the observed effects on BP, although the possibility that other genes in the region may be at play cannot be excluded.^ No definitive evidence for an effect of the renin, angiotensinogen, or AT1 loci on interindividual variation in BP was obtained in this study, suggesting that the impact of these genes on BP may not be great in the Caucasian population-at-large. However, this does not preclude a larger effect of these genes in some subsets of individuals, especially among those with clinically manifest hypertension or coronary heart disease, or in other populations. ^
Resumo:
Diethylstilbestrol (DES) exposed women are well known to be at increased risk of gynecologic cancers and infertility. Infertility may result from DES associated abnormalities in the shape of women's uteri, yet little research has addressed the effect of uterine abnormalities on risk of infertility and reproductive tract infection. Changes in uterine shape may also influence the risk of autoimmune disease and women's subsequent mental health. A sample of consenting women exposed in utero to hormone who were recruited into the DESAD project, underwent hysterosalpingogram (HSG) from 1978 to 1984. These women also completed a comprehensive health questionnaire in 1994 which included women's self-reports of chronic conditions. HSG data were used to categorize uterine shape abnormalities as arcuate shape, hypoplastic, wide lower segment, and constricted. Women were recruited from two of the four DESAD study sites in Houston (Baylor) and Minnesota (Mayo). All women were DES-exposed. Adjusted relative risk estimates were calculated comparing the range of abnormal uterine shaped to women with normal shaped uteri for each of the four outcomes: infertility, reproductive tract infection, autoimmune disease and depressive symptoms. Only the arcuate shape (n=80) was associated with a higher risk of infertility (relative risk [RR]= 1.53, 95% CI = 1.09, 2.15) as well as reproductive tract infection (RR= 1.74, 95% CI = 1.11, 2.73). In conclusion, DES-associated arcuate shaped uteri appeared to be associated with the higher risk of a reproductive tract infection and infertility while no other abnormal uterine shapes were associated with these two outcomes.^
Resumo:
The primary objectives of the study were to measure the incidence of pelvic endometriosis among white females of reproductive age (15-49 years) in Rochester, Minnesota, during the period 1970-1979 and to determine the risk of endometriosis by age, marital status, nun status, and educational attainment in this population. An historical prospective design was used. Incident (newly diagnosed) cases were identified from community medical records, and person-years of risk in the study population were estimated from census data.^ Almost two-thirds of the incident cases had surgically verified endometriosis, while the remainder were diagnosed by clinical findings alone. Incidence rates were prepared first with histologically confirmed cases only and then with the successive inclusion of less certain cases: surgically visualized, clinically probable, and clinically possible. On this basis, overall incidence rates were 108.8 to 246.9 newly diagnosed cases per 100,000 person-years. The incidence of pelvic endometriosis was lowest for women 15-19 years of age, increased markedly through age 44, and then declined for women 45-49 years of age. A significantly greater risk of pelvic endometriosis in never married women was detected only when the numerator was limited to histologically confirmed cases. Among never married women 20-49 years of age, no significant difference in the risk of pelvic endometriosis by nun status was detected, but a trend toward a lower incidence in nuns was observed. Women with education beyond high school had a significantly higher incidence of endometriosis than women with less education.^ Cases in the four diagnostic groups differed greatly by age and marital status but were similar with respect to virtually all other characteristics, once age differences were considered. Reproductive history characteristics described included: age of menarche; history of menopause; total pregnancies; ages of first pregnancy, marriage, and sexual intercourse; years from menarche to first intercourse; years of ovulatory cycling; difficulty becoming pregnant; and delay of the first pregnancy by choice. How these characteristics of incident cases differ from those of women free of endometriosis needs to be studied in future research. ^
Resumo:
A population-based case-control study of risk factors for ectopic pregnancy has been conducted. The investigation includes 274 cases diagnosed in Rochester, Minnesota residents from 1935 through 1982, and 548 matched controls selected from live birth deliveries. Risk factor information documented prior to the last index menstrual period was obtained via medical record abstract for 22 potential risk factor variables.^ Univariate matched analyses revealed nine variables with significantly elevated odds ratios (ORs). Following conditional logistic regression for matched sets, four variables remained as significant risk factors for ectopic pregnancy. These risk factors with ORs and 95% confidence intervals (Cls) were: current intrauterine device use (OR = 13.7, Cl = 1.6 - 120.6), infertility (OR = 2.6, Cl = 1.6 - 4.2), pelvic inflammatory disease (OR = 3.3, Cl = 1.6 - 6.6), and tubal surgery (OR = 4.5, Cl = 1.5 - 13.9). After adjusting for these four major risk factors, the following variables did not have statistically significant ORs: abdominal/pelvic surgery (OR = 2.0), acute appendicitis (OR = 2.0), anovulation (OR = 1.2), clomiphene citrate use during the index conception (OR = 3.5), induced abortion (OR = 2.1), in utero exposure to diethylstilbestrol (OR = 1.6), myomas (OR = 0.7), ovarian cysts (OR = 1.0), and past intrauterine device use (OR = 1.2). ^