5 resultados para Minimum Mean Square Error of Intensity Distribution

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation was written in the format of three journal articles. Paper 1 examined the influence of change and fluctuation in body mass index (BMI) over an eleven-year period, on changes in serum lipid levels (total, HDL, and LDL cholesterol, triglyceride) in a population of Mexican Americans with type 2 diabetes. Linear regression models containing initial lipid value, BMI and age, BMI change (slope of BMI), and BMI fluctuation (root mean square error) were used to investigate associations of these variables with change in lipids over time. Increasing BMI over time was associated with gains in total and LDL cholesterol and triglyceride levels in women. Fluctuation of BMI was not associated with detrimental lipid profiles. These effects were independent of age and were not statistically significant in men. In Mexican-American women with type 2 diabetes, weight reduction is likely to result in more favorable levels of total and LDL cholesterol and triglyceride, without concern for possible detrimental effects of weight fluctuation. Weight reduction may not be as effective in men, but does not appear to be harmful either. ^ Paper 2 examined the associations of upper and total body fat with total cholesterol, HDL and LDL cholesterol, and triglyceride levels in the same population. Multilevel analysis was used to predict serum lipid levels from total body fat (BMI and triceps skinfold) and upper body fat (subscapular skinfold), while controlling for the effects of sex, age and self-correlations across time. Body fat was not strikingly associated with trends in serum lipid levels. However, upper body fat was strongly associated with triglyceride levels. This suggests that loss of upper body fat may be more important than weight loss in management of the hypertriglyceridemia commonly seen in type 2 diabetes. ^ Paper 3 was a review of the literature reporting associations between weight fluctuation and lipid levels. Few studies have reported associations between weight fluctuation and total, LDL, and HDL cholesterol and triglyceride levels. The body of evidence to date suggests that weight fluctuation does not strongly influence levels of total, LDL and HDL cholesterol and triglyceride. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of group-randomized trials is particularly widespread in the evaluation of health care, educational, and screening strategies. Group-randomized trials represent a subset of a larger class of designs often labeled nested, hierarchical, or multilevel and are characterized by the randomization of intact social units or groups, rather than individuals. The application of random effects models to group-randomized trials requires the specification of fixed and random components of the model. The underlying assumption is usually that these random components are normally distributed. This research is intended to determine if the Type I error rate and power are affected when the assumption of normality for the random component representing the group effect is violated. ^ In this study, simulated data are used to examine the Type I error rate, power, bias and mean squared error of the estimates of the fixed effect and the observed intraclass correlation coefficient (ICC) when the random component representing the group effect possess distributions with non-normal characteristics, such as heavy tails or severe skewness. The simulated data are generated with various characteristics (e.g. number of schools per condition, number of students per school, and several within school ICCs) observed in most small, school-based, group-randomized trials. The analysis is carried out using SAS PROC MIXED, Version 6.12, with random effects specified in a random statement and restricted maximum likelihood (REML) estimation specified. The results from the non-normally distributed data are compared to the results obtained from the analysis of data with similar design characteristics but normally distributed random effects. ^ The results suggest that the violation of the normality assumption for the group component by a skewed or heavy-tailed distribution does not appear to influence the estimation of the fixed effect, Type I error, and power. Negative biases were detected when estimating the sample ICC and dramatically increased in magnitude as the true ICC increased. These biases were not as pronounced when the true ICC was within the range observed in most group-randomized trials (i.e. 0.00 to 0.05). The normally distributed group effect also resulted in bias ICC estimates when the true ICC was greater than 0.05. However, this may be a result of higher correlation within the data. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to develop a comprehensive IMSRT QA procedure that examined, using EPID dosimetry and Monte Carlo (MC) calculations, each step in the treatment planning and delivery process. These steps included verification of the field shaping, treatment planning system (RTPS) dose calculations, and patient dose delivery. Verification of each step in the treatment process is assumed to result in correct dose delivery to the patient. ^ The accelerator MC model was verified against commissioning data for field sizes from 0.8 × 0.8 cm 2 to 10 × 10 cm 2. Depth doses were within 2% local percent difference (LPD) in low gradient regions and 1 mm distance to agreement (DTA) in high gradient regions. Lateral profiles were within 2% LPD in low gradient regions and 1 mm DTA in high gradient regions. Calculated output factors were within 1% of measurement for field sizes ≥1 × 1 cm2. ^ The measured and calculated pretreatment EPID dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Pretreatment field verification resulted in 97% percent of the points passing. ^ The RTPS and Monte Carlo phantom dose calculations were compared using 5% LPD, 2 mm DTA, or 2% of the maximum dose with ≥95% of compared points required passing for successful verification. RTPS calculation verification resulted in 97% percent of the points passing. ^ The measured and calculated EPID exit dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Exit dose verification resulted in 97% percent of the points passing. ^ Each of the processes above verified an individual step in the treatment planning and delivery process. The combination of these verification steps ensures accurate treatment delivery to the patient. This work shows that Monte Carlo calculations and EPID dosimetry can be used to quantitatively verify IMSRT treatments resulting in improved patient care and, potentially, improved clinical outcome. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies are compared for the development of a linear regression model with stochastic (multivariate normal) regressor variables and the subsequent assessment of its predictive ability. Bias and mean squared error of four estimators of predictive performance are evaluated in simulated samples of 32 population correlation matrices. Models including all of the available predictors are compared with those obtained using selected subsets. The subset selection procedures investigated include two stopping rules, C$\sb{\rm p}$ and S$\sb{\rm p}$, each combined with an 'all possible subsets' or 'forward selection' of variables. The estimators of performance utilized include parametric (MSEP$\sb{\rm m}$) and non-parametric (PRESS) assessments in the entire sample, and two data splitting estimates restricted to a random or balanced (Snee's DUPLEX) 'validation' half sample. The simulations were performed as a designed experiment, with population correlation matrices representing a broad range of data structures.^ The techniques examined for subset selection do not generally result in improved predictions relative to the full model. Approaches using 'forward selection' result in slightly smaller prediction errors and less biased estimators of predictive accuracy than 'all possible subsets' approaches but no differences are detected between the performances of C$\sb{\rm p}$ and S$\sb{\rm p}$. In every case, prediction errors of models obtained by subset selection in either of the half splits exceed those obtained using all predictors and the entire sample.^ Only the random split estimator is conditionally (on $\\beta$) unbiased, however MSEP$\sb{\rm m}$ is unbiased on average and PRESS is nearly so in unselected (fixed form) models. When subset selection techniques are used, MSEP$\sb{\rm m}$ and PRESS always underestimate prediction errors, by as much as 27 percent (on average) in small samples. Despite their bias, the mean squared errors (MSE) of these estimators are at least 30 percent less than that of the unbiased random split estimator. The DUPLEX split estimator suffers from large MSE as well as bias, and seems of little value within the context of stochastic regressor variables.^ To maximize predictive accuracy while retaining a reliable estimate of that accuracy, it is recommended that the entire sample be used for model development, and a leave-one-out statistic (e.g. PRESS) be used for assessment. ^