28 resultados para Mercury in breast milk

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signaling through epidermal growth factor receptor (EGFR/ErbB) family members plays a very important role in regulating proliferation, development, and malignant transformation of mammary epithelial cells. ErbB family members are often over-expressed in human breast carcinomas. Lapatinib is an ErbB1 and ErbB2 tyrosine kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung cancer cells. Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis. Lapatinib has been approved for clinical use, though patients have developed resistance to the drug, as seen previously with other EGFR inhibitors. Moreover, the therapeutic efficacy varies significantly within the patient population, and the mechanism of drug sensitivity is not fully understood. Expression levels of ErbB2 are used as a prognostic marker for Lapatinib response; however, even among breast tumor cell lines that express similar levels of ErbB2 there is marked difference in their proliferative responses to Lapatinib. To understand the mechanisms of acquired resistance, we established a cell line SkBr3-R that is resistant to Lapatinib, from a Lapatinib-sensitive breast tumor cell line, SkBr3. We have characterized the cell lines and demonstrated that Lapatinib resistance in our system is not facilitated by receptor-level activity or by previously known mutations in the ErbB receptors. Significant changes were observed in cell proliferation, cell migration, cell cycle and cell death between the Lapatinib resistant SkBr3-R and sensitive SkBr3 cell lines. Recent studies have suggested STAT3 is upregulated in Lapatinib resistant tumors in association with ErbB signaling. We investigated the role that STAT3 may play in Lapatinib resistance and discovered higher STAT3 activity in these resistant cells. In addition, transcriptional profiling indicated higher expression of STAT3 target genes, as well as of other genes that promote survival. The gene array data also revealed cell cycle regulators and cell adhesion/junction component genes as possible mediator of Lapatinib resistance. Altogether, this study has identified several possible mechanisms of Lapatinib resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that Estrogen Receptor alpha (ERα) is an important indicator for diagnosis, prognosis and treatment of breast cancers. However, the question remains as to the role of ERα in the cell in the presence versus absence of 17-β estradiol In this dissertation the role of ERα in both its unliganded and liganded state, with respect to the cell cycle will be explored. The cell line models used in this project are ER-positive MCF-7 cells with and without siRNA to ERα and ER-positive MDA-MB-231 cells that have been engineered to express ERα. Cells were synchronized and the cell cycle progression was monitored by flow cytometric analysis. Using these methods, two specific questions were addressed: Does ERα modulate the cell cycle differently under liganded versus unliganded conditions? And, does the presence of ERα regulate cell cycle phase transitions? The results show for the first time that ERα is cell cycle regulated and modulates the progression of cells through S and G2/M phases of the cell cycle. Ligand bound ERα increases progression through S and G2/M phases, whereas unliganded ERα acts as an inhibitor of cell cycle progression. To further investigate the cell cycle regulated effects of liganded ERα, a luciferase assay was performed and showed that the transcription of target genes such as Progestrone Receptor (PgR) and Trefoil protein (pS2) increased duing S and G2/M phases when ERα is bound to ligand. Additionally, complex formation between cyclin B and ER α was shown by immunoprecipitation and led to the discovery that anaphase promoting complex (APC) is the E3 ligase for both cyclin B and ERα at the termination of M phase. Our findings suggest that unliganded ERα has an inhibitory effect on the progression of the cell cycle. Therefore, it is reasonable to speculate that the combination of drugs that lower estrogen level (such as aromatase inhibitors) and preserves ERα from degradation would provide better outcome for breast cancer treatment. We have shown that APC functions as the E3 ligase for ERα and thus might provide a target to design a specific inhibitor of ERα degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of human cancers overexpress the HER-2/neu proto-oncogene. Among patients with breast and ovarian cancers this HER-2/ neu overexpression indicates an unfavorable prognosis, with a shorter overall survival duration and a lower response rate to chemotherapeutic agents. Downregulation of HER-2/neu gene expression in cancer cells through attenuation of HER-2/neu promoter activity is, therefore, an attractive strategy for reversing the transformation phenotype and thus the chemoresistance induced by HER-2/neu overexpression. ^ A viral transcriptional regulator, the adenovirus type 5 E1A (early region 1A) that can repress the HER-2/neu promoter, had been identified in the laboratory of Dr. Mien-Chie Hung. Following the identification of the E1A gene, a series of studies revealed that repression of HER-2/neu by the E1A gene which can act therapeutically as a tumor suppressor gene for HER-2/ neu-overexpressing cancers. ^ The results of these preclinical studies became the basis for a phase I trial for E1A gene therapy among patients with HER-2/neu-overexpressing breast and ovarian cancer. In this dissertation, three primary questions concerned with new implications of E1A gene therapy are addressed: First, could E1A gene therapy be incorporated with conventional chemotherapy? Second, could the E1A gene be delivered systemically to exert an anti-tumor effect? And third, what is the activity of the E1A gene in low-HER-2/neu-expressing cancer cells? ^ With regard to the first question, the studies reported in this dissertation have shown that the sensitivity of HER-2/neu-overexpressing breast and ovarian cancer to paclitaxel is in fact enhanced by the downregulation of HER-2/neu overexpression by E1A. With regard to the second question, studies have shown that the E1A gene can exert anti-tumor activity by i.v. injection of the E1A gene complexed with the novel cationic liposome/protamine sulfate/DNA type I (LPDI). And with regard to the third question, the studies of low-HER-2/ neu-expressing breast and ovarian cancers reported here have shown that the E1A gene does in fact suppress metastatic capability. It did not, however, suppress the tumorigenicity. ^ Three conclusions can be drawn from the experimental findings reported in this dissertation. Combining paclitaxel with E1A gene therapy may expand the implications of the gene therapy in the future phase II clinical trial. Anti-tumor activity at a distant site may be achieved with the i.v. injection of the E1A gene. Lastly when administered therapeutically the anti-metastatic effect of the E1A gene in low-HER-2/neu-expressing breast cancer cells may prevent metastasis in primary breast cancer. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we demonstrated the novel functions of two important prognostic markers in breast cancer, EGFR and b -catenin in proliferation and/or other transformation phenotype. ^ First we demonstrated that EGFR could be detected in the nucleus in highly proliferating tissues, including primary breast cancer samples and a breast cancer cell line. We found that EGFR contained a strong transactivation domain, complexed with an AT-rich consensus DNA sequence and activated promoters containing this sequence, including cyclin D1 promoter. Therefore, EGFR may function as a transcription factor to activate genes required for highly proliferating activity such as cyclin D1 in breast cancer. ^ In the second part of this study, we identified b -catenin as an important prognostic factor in breast cancer. We found that cyclin D1 was one of the genes regulated by b -catenin in breast cancer cells. The transactivation activity of b -catenin correlated significantly with cyclin D1 expression in both breast cancer cell lines and in breast cancer patient samples, in which high b -catenin activity correlated with poor prognosis of the patients. Moreover, blockage of b -catenin activity significantly inhibited transformation phenotypes in breast cancer cells. Therefore, our results indicate that b -catenin can be involved in breast cancer formation and/or progression and may serve as a target for breast cancer therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyomavirus enhancer activator 3 (PEA3) is a member of the Ets family of transcription factors. We demonstrated in a previous study that, through down-regulating the HER-2/neu oncogene at the transcriptional level, PEA3 can inhibit the growth and tumor development of HER-2/neu-overexpressing ovarian cancer cells. Here, we established stable clones of the human breast cancer cell line MDA-MB-361DYT2 that express PEA3 under the control of a tetracycline-inducible promoter. The expression of PEA3 in this cell line inhibited cell growth and resulted in cell cycle delay in the G1 phase independently of the HER-2/neu down-regulation. In an orthotopic breast cancer model, we showed that expression of PEA3 inhibited tumor growth and prolonged the survival of tumor-bearing mice. In a parallel experiment in another breast cancer cell line, BT474M1, we were unable to obtain stable PEA3-inducible transfectants, which suggests that PEA3 possessed a strong growth inhibitory effect in this cell line. Indeed, PEA3 coupled with the liposome SN2 demonstrated therapeutic effects in mice bearing tumors induced by BT474M1. These results provide evidence that the PEA3 gene could function as an antitumor and gene therapy agent for human breast cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely acknowledged in theoretical and empirical literature that social relationships, comprising of structural measures (social networks) and functional measures (perceived social support) have an undeniable effect on health outcomes. However, the actual mechanism of this effect has yet to be clearly understood or explicated. In addition, comorbidity is found to adversely affect social relationships and health related quality of life (a valued outcome measure in cancer patients and survivors). ^ This cross sectional study uses selected baseline data (N=3088) from the Women's Healthy Eating and Living (WHEL) study. Lisrel 8.72 was used for the latent variable structural equation modeling. Due to the ordinal nature of the data, Weighted Least Squares (WLS) method of estimation using Asymptotic Distribution Free covariance matrices was chosen for this analysis. The primary exogenous predictor variables are Social Networks and Comorbidity; Perceived Social Support is the endogenous predictor variable. Three dimensions of HRQoL, physical, mental and satisfaction with current quality of life were the outcome variables. ^ This study hypothesizes and tests the mechanism and pathways between comorbidity, social relationships and HRQoL using latent variable structural equation modeling. After testing the measurement models of social networks and perceived social support, a structural model hypothesizing associations between the latent exogenous and endogenous variables was tested. The results of the study after listwise deletion (N=2131) mostly confirmed the hypothesized relationships (TLI, CFI >0.95, RMSEA = 0.05, p=0.15). Comorbidity was adversely associated with all three HRQoL outcomes. Strong ties were negatively associated with perceived social support; social network had a strong positive association with perceived social support, which served as a mediator between social networks and HRQoL. Mental health quality of life was the most adversely affected by the predictor variables. ^ This study is a preliminary look at the integration of structural and functional measures of social relationships, comorbidity and three HRQoL indicators using LVSEM. Developing stronger social networks and forming supportive relationships is beneficial for health outcomes such as HRQoL of cancer survivors. Thus, the medical community treating cancer survivors as well as the survivor's social networks need to be informed and cognizant of these possible relationships. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cell lines can be treated with a drug and the molecular comparison of responders and non-responders may yield potential predictors that could be tested in the clinic. It is a bioinformatics challenge to apply the cell line-derived multivariable response predictors to patients who respond to therapy. Using the gene expression data from 23 breast cancer cell lines, I developed three predictors of dasatinib sensitivity by selecting differentially expressed genes and applying different classification algorithms. The performance of these predictors on independent cell lines with known dasatinib response was tested. The predictor based on weighted voting method has the best overall performance. It correctly predicted dasatinib sensitivity in 11 out of 12 (92%) breast and 17 out of 23 (74%) lung cancer cell lines. These predictors were then applied to the gene expression data from 133 breast cancer patients in an attempt to predict how the patients might respond to dasatinib therapy. Two predictors identified 13 patients in common to be dasatinib sensitive. Sixty two percent of these cases are triple negative (ER-negative, HER2-negative and PR-negative) and 76% are double negative. The result is consistent with the findings from other studies, which identified a target population for dasatinib treatment to be triple negative or basal breast cancer subtype. In conclusion, we think that the cell line-derived dasatinib classifiers can be applied to the human patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer patients increasingly request alternative therapies such as imagery techniques and support groups. Although research suggests evidence of enhanced psychosocial functioning with supportive group therapy and enhanced immune function with imagery techniques, studies are anecdotal or limited to case studies or descriptive reports. The efficacy of these alternative therapies should be validated by randomized, controlled trials and the mechanisms of action mediating immune function and outcome examined.^ In a 12-month pilot study, we evaluate the feasibility of conducting a controlled study with clinical trial methodology to test the effects of imagery/relaxation and support on quality of life, emotional well-being, and immune function for women after breast cancer. Using a randomized pre-post test design with three intervention waves, we assigned women (n = 47) to either standard care (n = 15), standard care plus 6-weekly support sessions (n = 16) or imagery/relaxation sessions (n = 16).^ The primary aim of this pilot study is to determine the feasibility of conducting a clinical trial of alternative therapies in a clinical care setting. Secondary aims are to determine parameter estimates for the effects of the two treatment groups on quality of life, coping, social support, and immune function and describe methodology issues related to trials of alternative therapies.^ The research provides direction for future studies of alternative therapies by describing the recruitment, clinical trial experience, and related methodology issues. The study extends previous work by differentiating the effects of support group from mental imagery among outpatient groups who are homogeneous regarding cancer type and treatment stage. The study provides data for future longitudinal studies of disease progression by differentiating the effectiveness of interventions designed to enhance quality of life, coping, social support, and immune function and subsequently, alter the clinical course of disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER Midan Ai, Ph.D. Supervisory Professor: Zhen Fan, M.D. Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism needs to be determined. In my studies, I found that high expression of HER2 is correlated with high expression of Brk in breast cancer cell lines. Silencing HER2 expression via RNA interference in HER2 over-expressed breast cancer cells resulted in Brk protein decrease and overexpression of HER2 in HER2 low-expressed breast cancer cells up-regulated Brk expression. The mechanism study indicated that overexpression of HER2 increased Brk protein stability. Brk was degraded through a Ca2+-dependent protease pathway involving calpain and HER2 stimulated Brk expression via inhibiting calpain activity. Calpastatin is a calpain endogenous inhibitor and the calpain-calpastatin system has been implicated in a number of cell physiological functions. HER2 restrained calpain activation via up-regulating calpastatin expression and HER2 downstream signaling, MAPK pathway, was involved in the regulation. Furthermore, silencing of Brk expression by RNA interference in HER2-overexpressing breast cancer cells decreased HER2-mediated cell proliferation, survival, invasion/metastasis potential and increased cell sensitivity to HER2 kinase inhibitor, lapatinib, treatment, indicating that Brk plays important roles in regulating and mediating the oncogenic functions of HER2. The Stat3 pathway played important roles in Brk mediated cell survival and invasion/metastasis in the context of HER2-overexpressing breast cancer cells. However, transgenic mice with inducible expression of constitutively active Brk (CA) in the mammary epithelium failed to develop malignant change in the mammary glands after Brk induction for 15 months which indicated that expression of Brk protein alone was not sufficiently to induce spontaneous breast tumor. Bitransgenic mice with co-expression of HER2/neu and inducible expression of Brk in the mammary epithelium developed multifocal mammary tumors, but there were no significant difference in the tumor occurring time, tumor size, tumor weight and tumor multiplicity between the mouse group with co-expression of Brk and HER2/neu and the mouse group with HER2/neu expression only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain metastasis is a common cause of mortality in cancer patients. Approximately 20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF- IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking sublines of breast cancer cells, driving an increase in in vitro metastatic properties. We demonstrate that IGF-IR signaling is activated in an autocrine manner as a result of IGFBP3 overexpression in brain-seeking cells. Transient and stable knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling through phospho-AKT, as well as decreased in vitro migration and invasion of MDA- MB-231Br brain-seeking cells. Using an in vivo experimental brain metastasis model, we show that IGF-IR ablation attenuates the establishment of brain metastases and prolongs survival. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression and amplification of HER2/neu have been documented in many primary tumors, most notably in breast. Not only do approximately 30% of breast cancer patients carry tumors that overexpress the gene, but those that do generally have shorter overall and disease-free survival times than patients with tumors expressing low levels of HER2/neu. Thus, overexpression of HER2/neu plays an important role in the pathogenesis of breast cancer. We have examined the mechanisms that result in HER2/neu overexpression in breast cancer by using, as a model system, established breast cancer cell lines that express much higher levels of HER2/neu mRNA than normal breast tissue while maintaining a near normal HER2/neu gene copy number. Nuclear run-on experiments indicate that the breast cancer cell lines MDA-MB453, BT483, and BT474 have an increased HER2/neu gene transcription rate. By using HER2/neu promoter-CAT constructs, we have found that the enhanced HER2/neu transcription rate in MDA-MB453 cells is due to activation of the gene in trans, while the enhanced transcription rate in BT483 cells is due to activation of the gene in either trans or cis. In BT474 cells, transcriptional upregulation is primarily due to gene amplification. Since the levels of increased transcription are not as high as the levels of HER2/neu mRNA in any of these three lines, post-transcriptional deregulation that increases HER2/neu expression must also be functioning in these cells. The half-life of HER2/neu mRNA was measured and found to be equivalent in these lines as in a control. Thus, the post-transcriptional deregulation is not increased stability of the HER2/neu transcript.^ Much work has been performed in characterizing the altered trans-acting factor involved in increased HER2/neu transcription in MDA-MB453 cells. Using promoter deletion constructs linked to a reporter gene, the region responsive to this factor was localized in the rat neu promoter. When human HER2/neu promoter constructs were used, the homologous sequence in the human promoter was identified. Furthermore, a number of protein/DNA complexes are detected when these promoter regions are used in gel mobility shift assays. UV-crosslinking experiments indicate DNA-binding proteins of roughly 110 kDa, 70 kDa, and 35 kDa are capable of interacting with the human promoter element. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the receptor tyrosine kinase p185ErbB2 confers taxol resistance in breast cancers and activation of p34Cdc2 is required for taxol-induced apoptosis and cytotoxicity. Here, we investigated the underlying mechanisms and found that overexpression of p185 ErbB2 inhibits taxol-induced apoptosis through two branches to inhibit activation of p34Cdc2. ^ Overexpression of p185ErbB2 in MDA-MB-435 cells by transfection transcriptionally upregulated p21Cip1, which associates with p34Cdc2, inhibits taxol-mediated p34Cdc2 activation, delays cell entrance to G2/M phase, and thereby inhibits taxol-induced apoptosis. In p21Cip1 antisense-transfected MDA-MB-435 cells or in p21−/− MEF cells, p185ErbB2 was unable to inhibit taxol-induced apoptosis. Therefore, p21Cip1 participates in the regulation of a G2/M checkpoint that contributes to resistance to taxol-induced apoptosis in p185ErbB2-overexpressing breast cancer cells. ^ Direct phosphorylation on Tyrosine-15 of p34Cdc2 by p185 ErbB2 receptor tyrosine kinase inhibits p34Cdc2 activation. The wild-type p185ErbB2 but not the kinase-defective mutant, when overexpressed in breast cancer cells, can phosphorylate p34Cdc2 on tyrosine (Tyr)15, an inhibitory phosphorylation site of p34 Cdc2. The kinase domain of the ErbB2 receptor was sufficient for binding to p34Cdc2 and directly phosphorylating the recombinant Cdc2. Phosphospecific Cdc2-Tyr15 immunoblot analyses, immunocomplex kinase assays, and phospho-amino acid analyses revealed that p185ErbB2 specifically phosphorylates Cdc2 on Tyr15. Phosphorylation of Cdc2-Tyr15 by ErbB2 is modulated during cell cycle and corresponded with delayed cell entry into G2/M phase. The kinase-defective p185ErbB2, which incapable of phosphorylating Cdc2-Tyr15, failed to inhibit taxol-induced activation and apoptosis, whereas the wild-type and the constitutive-active p185ErbB2 did. Increased Cdc2-Tyr15 phosphorylation was found in Erb132-overexpressing tumors from breast cancer patients. Thus, direct phosphorylation of Cdc2-Tyr15 by p185 ErbB2 RTK in breast cancer cells inhibits taxol-induced p34 Cdc2 activation and apoptosis, thereby conferring taxol resistance. ^