6 resultados para Max-weight function
em DigitalCommons@The Texas Medical Center
Resumo:
OBJECTIVE: Bariatric surgery reverses obesity-related comorbidities, including type 2 diabetes mellitus. Several studies have already described differences in anthropometrics and body composition in patients undergoing Roux-en-Y gastric bypass compared with laparoscopic adjustable gastric banding, but the role of adipokines in the outcomes after the different types of surgery is not known. Differences in weight loss and reversal of insulin resistance exist between the 2 groups and correlate with changes in adipokines. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7 kg/m(2)) underwent 2 types of laparoscopic weight loss surgery (Roux-en-Y gastric bypass=10, adjustable gastric banding=5). Weight, waist and hip circumference, body composition, plasma metabolic markers, and lipids were measured at set intervals during a 24-month period after surgery. RESULTS: At 24 months, patients who underwent Roux-en-Y were overweight (BMI 29.7 kg/m(2)), whereas patients who underwent gastric banding remained obese (BMI 36.3 kg/m(2)). Patients who underwent Roux-en-Y lost significantly more fat mass than patients who underwent gastric banding (mean difference 16.8 kg, P<.05). Likewise, leptin levels were lower in the patients who underwent Roux-en-Y (P=.003), and levels correlated with weight loss, loss of fat mass, insulin levels, and Homeostasis Model of Assessment 2. Adiponectin correlated with insulin levels and Homeostasis Model of Assessment 2 (r=-0.653, P=.04 and r=-0.674, P=.032, respectively) in the patients who underwent Roux-en-Y at 24 months. CONCLUSION: After 2 years, weight loss and normalization of metabolic parameters were less pronounced in patients who underwent gastric banding compared with patients who underwent Roux-en-Y gastric bypass. Our findings require confirmation in a prospective randomized trial.
Resumo:
Gene silencing due to epigenetic mechanisms shows evidence of significant contributions to cancer development. We hypothesis that the genetic architecture based on retrotransposon elements surrounding the transcription start site, plays an important role in the suppression and promotion of DNA methylation. In our investigation we found a high rate of SINE and LINEs retrotransposon elements near the transcription start site of unmethylated genes when compared to methylated genes. The presence of these elements were positively associated with promoter methylation, contrary to logical expectations, due to the malicious effects of retrotransposon elements which insert themselves randomly into the genome causing possible loss of gene function. In our genome wide analysis of human genes, results suggested that 22% of the genes in cancer were predicted to be methylation-prone; in cancer these genes are generally down-regulated and function in the development process. In summary, our investigation validated our hypothesis and showed that these widespread genomic elements in cancer are highly associated with promoter DNA methylation and may further participate in influencing epigenetic regulation.
Resumo:
There is growing support for the theory that an interaction between the immune and reproductive/endocrine systems underlies the pathogenesis of autoimmune rheumatic diseases. Most of the recent evidence derives from studies of sex hormones and pregnancy in women with systemic lupus. Other than an ameliorative effect of pregnancy, little is known about reproductive factors in relation to rheumatoid arthritis. To elucidate the relationship, a population-based retrospective study was undertaken. Included were 378 female residents of Olmsted County, Minnesota diagnosed with rheumatoid arthritis between 1950 and 1982 (cases) and 325 arthritis-free, married female controls matched to the 324 married cases on birth-year, age at first marriage, and duration of Olmsted County residency. Information of reproductive factors was extracted from the medical records system maintained by the Mayo Clinic.^ Cases had lower fertility rates compared with the female population of Minnesota (rate ratio = 0.86, 95% confidence interval (CI)= 0.80-0.92). Fertility was significantly reduced even prior to the onset of rheumatoid factor positive arthritis. Restricting the comparison to married Olmsted County residents did not alter the results. Further adjustments for time not at risk of conception using survival analysis and proportional hazards modeling only intensified the fertility reduction in the married cases compared with controls. Nulligravidity was more common among cases than controls (odds ratio = 3.16, CI = 1.61-6.20). Independent of fertility, pregnancy had a protective effect against rheumatoid arthritis (odds ratio = 0.31, CI = 0.11-0.89), which was dramatically reversed in the 12 months postpartum (odds ratio = 4.67, CI = 1.50-14.47). Cases were younger at menopause than controls (p $<$ 0.01).^ Small but statistically insignificant associations were observed between rheumatoid arthritis and the following factors: increased frequency of complaints to a physician of infertility; increased frequency of spontaneous abortion, premature birth, and congenital malformations following arthritis onset; and increased prevalence of menopause at arthritis onset. Cases did not differ from controls on age at menarche, duration of pregnancy, or birth weight.^ The findings provide further support for the involvement of the reproductive/endocrine systems in the pathogenesis of autoimmune rheumatic disease. The search for biological mechanisms should be intensified. ^
Resumo:
The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^
Resumo:
PURPOSE: In United States, the percentage of Extremely Low Birth Weight (ELBW) born for year 2006 was 0.8% (approximately 32,000 babies) & Very Low Birth Weight (VLBW) 1.48% (1). ELBW babies account for nearly half (49%) of the infant mortality for United States. Very Low birth weight infants are at a significant risk for high mortality and morbidity due to their multi system involvement and predisposition to lung prematurity and impaired immune function. One of the common causes cited is Vitamin A deficiency (2, 3).The purpose of this study is to look at published literature on Vitamin A supplementation in very low birth weight (VLBW) infants. ^ RESEARCH DESIGN: Systematic review of literature of published articles meeting the pre-defined criteria. ^ PROCEDURE: Studies included in this review were those which looked at very low birth weight infants defined as birth weight<1500gms. All experimental studies were reviewed. Studies looking at the effect of Vitamin A supplementation in comparison with a placebo or by itself in varying dosing regimens as an intervention were reviewed. Vitamin A deficiency and its manifestations were of interest. We used key words such as "very low birth weight", "mortality", "Vitamin A", "retinol" and "supplementation" in our search. ^ RISKS & POTENTIAL BENEFITS: We do not see any potential risks associated with this study. The potential benefit is recommendation for future studies based on the review of literature available currently. ^ IMPORTANCE OF KNOWLEDGE THAT MAY REASONABLY BE EXPECTED TO RESULT: The systematic review of literature of all experimental studies in VLBW infants showed uniform correlation of parenteral Vitamin A dosing and high plasma concentrations achieved. The recommended dosage for use is 5000 IU 3 times/week given intramuscularly for 4 weeks to prevent CLD. Higher doses have not shown benefit, with a potential for toxicity, while lower doses are inadequate. There is no role of use of Vitamin A in closure of patent ductus arteriosus & reducing mortality. However, it is important to state that the number of studies done so far is limited with small sample sizes. There is a need in the future for experimental studies to ascertain the role of Vitamin A to improve outcomes in VLBW. Atleast, one more RCT should be conducted using the dosage recommended above to make this a standard practice.^
Resumo:
Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^