5 resultados para Manuscripts, Armenian
em DigitalCommons@The Texas Medical Center
Resumo:
Similar to other health care processes, referrals are susceptible to breakdowns. These breakdowns in the referral process can lead to poor continuity of care, slow diagnostic processes, delays and repetition of tests, patient and provider dissatisfaction, and can lead to a loss of confidence in providers. These facts and the necessity for a deeper understanding of referrals in healthcare served as the motivation to conduct a comprehensive study of referrals. The research began with the real problem and need to understand referral communication as a mean to improve patient care. Despite previous efforts to explain referrals and the dynamics and interrelations of the variables that influence referrals there is not a common, contemporary, and accepted definition of what a referral is in the health care context. The research agenda was guided by the need to explore referrals as an abstract concept by: 1) developing a conceptual definition of referrals, and 2) developing a model of referrals, to finally propose a 3) comprehensive research framework. This dissertation has resulted in a standard conceptual definition of referrals and a model of referrals. In addition a mixed-method framework to evaluate referrals was proposed, and finally a data driven model was developed to predict whether a referral would be approved or denied by a specialty service. The three manuscripts included in this dissertation present the basis for studying and assessing referrals using a common framework that should allow an easier comparative research agenda to improve referrals taking into account the context where referrals occur.
Resumo:
Enteroaggregative Escherichia coli (EAEC) are considered an important emerging enteric and food-borne pathogen. The groups importantly affected by EAEC include international travelers, children in the developing world, and patients with HIV infection. EAEC does not commonly cause diarrheal illness in all hosts. ^ The reasons for the observed clinical variation in EAEC infection are multifactorial and are dependant on the pathogen, the inoculum ingested and the host susceptibility. A major obstacle in identifying the mechanism of pathogenesis for EAEC is the heterogeneity in virulence of strains. No EAEC virulence gene is consistently present in all diarrheagenic strains. However, a recent report suggests that a package of plasmid borne and chromosomal virulence factors are under the control of the described transcriptional activator aggR. Although the exact inoculum required for EAEC diarrheal illness is not known, a volunteer study has shown that oral ingestion of 10 10 cfu of virulent EAEC elicited diarrhea. Ongoing studies are being conducted to better define the exact infectious dose. There are also host factors associated with increased susceptibility of persons to diarrheal illness with EAEC. ^ The following three manuscripts: (1) review EAEC as an emerging enteric pathogen; (2) identify EAEC as a cause of acute diarrhea among different subpopulations worldwide; (3) identify virulence characteristics and the molecular epidemiology of EAEC isolates among travelers with diarrheal illness and describe the pathogenesis of EAEC infection. ^
Resumo:
Background. An enlarged tracheoesophageal puncture (TEP) results in aspiration around the voice prosthesis (VP) and may lead to pneumonia. The aims of this research were: (1) to conduct a systematic review and meta-analysis on enlarged TEP; (2) to analyze preoperative, perioperative, and postoperative risk factors for enlarged TEP; and (3) to evaluate control of leakage around the VP using conservative treatments and adverse events in patients with enlarged TEP.^ Methods. A systematic review was conducted (1978-2008). A summary risk estimate was calculated using a random-effects meta-analysis model. A retrospective cohort study was completed. Patients who underwent total laryngectomy and TEP at The University of Texas M. D. Anderson Cancer Center (MDACC) were included. Multiple logistic regression methods were used to assess risk factors for enlargement. Descriptive and bivariate statistics were calculated to evaluate outcomes and adverse events. Results: Twenty-seven manuscripts were included in the systematic review. The summary risk estimate of enlarged TEP/leakage around the VP was 7.2% (95% CI: 4.8%-9.6%). Temporary VP removal and TEP-site injections were the most commonly reported treatments. Neither prosthetic diameter (p=0.076) nor timing of TEP (p=0.297) significantly increased risk of enlargement per stratified analyses of published outcomes. The cumulative incidence of enlarged TEP was 18.6% (36/194, 95% CI: 13.0%-24.1%) in the MDACC cohort. Enlarged TEP occurred exclusively in irradiated patients. Adjusting for length of follow-up and timing of TEP, advanced nodal disease (ORadjusted: 4.3, 95% CI: 1.0-19.1), stricture (ORadjusted : 3.2, 95% CI: 1.2-8.6), and locoregional recurrence/distant metastasis after laryngectomy (ORadjusted: 6.2, 95% CI: 2.3-16.4) increased risk of enlarged TEP. At last follow-up, conservative methods controlled leakage around the VP in 81% (29/36) of patients. Unresolved leakage was associated with recurrent cancer (p=0.081) and TEP-site irregularity (p=0.003). Relative to those without enlargement, enlarged TEP patients had significantly higher risk of pneumonia (RR: 3.4, 95% CI: 1.9-6.2).^ Conclusions. These data establish that enlarged TEP poses serious health risks, and provide insight into medical and oncologic factors that may contribute to development of this complication. In addition, this research supports the use of conservative treatments to address leakage after enlarged TEP in lieu of complete TEP closure.^
Resumo:
Essential biological processes are governed by organized, dynamic interactions between multiple biomolecular systems. Complexes are thus formed to enable the biological function and get dissembled as the process is completed. Examples of such processes include the translation of the messenger RNA into protein by the ribosome, the folding of proteins by chaperonins or the entry of viruses in host cells. Understanding these fundamental processes by characterizing the molecular mechanisms that enable then, would allow the (better) design of therapies and drugs. Such molecular mechanisms may be revealed trough the structural elucidation of the biomolecular assemblies at the core of these processes. Various experimental techniques may be applied to investigate the molecular architecture of biomolecular assemblies. High-resolution techniques, such as X-ray crystallography, may solve the atomic structure of the system, but are typically constrained to biomolecules of reduced flexibility and dimensions. In particular, X-ray crystallography requires the sample to form a three dimensional (3D) crystal lattice which is technically di‑cult, if not impossible, to obtain, especially for large, dynamic systems. Often these techniques solve the structure of the different constituent components within the assembly, but encounter difficulties when investigating the entire system. On the other hand, imaging techniques, such as cryo-electron microscopy (cryo-EM), are able to depict large systems in near-native environment, without requiring the formation of crystals. The structures solved by cryo-EM cover a wide range of resolutions, from very low level of detail where only the overall shape of the system is visible, to high-resolution that approach, but not yet reach, atomic level of detail. In this dissertation, several modeling methods are introduced to either integrate cryo-EM datasets with structural data from X-ray crystallography, or to directly interpret the cryo-EM reconstruction. Such computational techniques were developed with the goal of creating an atomic model for the cryo-EM data. The low-resolution reconstructions lack the level of detail to permit a direct atomic interpretation, i.e. one cannot reliably locate the atoms or amino-acid residues within the structure obtained by cryo-EM. Thereby one needs to consider additional information, for example, structural data from other sources such as X-ray crystallography, in order to enable such a high-resolution interpretation. Modeling techniques are thus developed to integrate the structural data from the different biophysical sources, examples including the work described in the manuscript I and II of this dissertation. At intermediate and high-resolution, cryo-EM reconstructions depict consistent 3D folds such as tubular features which in general correspond to alpha-helices. Such features can be annotated and later on used to build the atomic model of the system, see manuscript III as alternative. Three manuscripts are presented as part of the PhD dissertation, each introducing a computational technique that facilitates the interpretation of cryo-EM reconstructions. The first manuscript is an application paper that describes a heuristics to generate the atomic model for the protein envelope of the Rift Valley fever virus. The second manuscript introduces the evolutionary tabu search strategies to enable the integration of multiple component atomic structures with the cryo-EM map of their assembly. Finally, the third manuscript develops further the latter technique and apply it to annotate consistent 3D patterns in intermediate-resolution cryo-EM reconstructions. The first manuscript, titled An assembly model for Rift Valley fever virus, was submitted for publication in the Journal of Molecular Biology. The cryo-EM structure of the Rift Valley fever virus was previously solved at 27Å-resolution by Dr. Freiberg and collaborators. Such reconstruction shows the overall shape of the virus envelope, yet the reduced level of detail prevents the direct atomic interpretation. High-resolution structures are not yet available for the entire virus nor for the two different component glycoproteins that form its envelope. However, homology models may be generated for these glycoproteins based on similar structures that are available at atomic resolutions. The manuscript presents the steps required to identify an atomic model of the entire virus envelope, based on the low-resolution cryo-EM map of the envelope and the homology models of the two glycoproteins. Starting with the results of the exhaustive search to place the two glycoproteins, the model is built iterative by running multiple multi-body refinements to hierarchically generate models for the different regions of the envelope. The generated atomic model is supported by prior knowledge regarding virus biology and contains valuable information about the molecular architecture of the system. It provides the basis for further investigations seeking to reveal different processes in which the virus is involved such as assembly or fusion. The second manuscript was recently published in the of Journal of Structural Biology (doi:10.1016/j.jsb.2009.12.028) under the title Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. This manuscript introduces the evolutionary tabu search strategies applied to enable a multi-body registration. This technique is a hybrid approach that combines a genetic algorithm with a tabu search strategy to promote the proper exploration of the high-dimensional search space. Similar to the Rift Valley fever virus, it is common that the structure of a large multi-component assembly is available at low-resolution from cryo-EM, while high-resolution structures are solved for the different components but lack for the entire system. Evolutionary tabu search strategies enable the building of an atomic model for the entire system by considering simultaneously the different components. Such registration indirectly introduces spatial constrains as all components need to be placed within the assembly, enabling the proper docked in the low-resolution map of the entire assembly. Along with the method description, the manuscript covers the validation, presenting the benefit of the technique in both synthetic and experimental test cases. Such approach successfully docked multiple components up to resolutions of 40Å. The third manuscript is entitled Evolutionary Bidirectional Expansion for the Annotation of Alpha Helices in Electron Cryo-Microscopy Reconstructions and was submitted for publication in the Journal of Structural Biology. The modeling approach described in this manuscript applies the evolutionary tabu search strategies in combination with the bidirectional expansion to annotate secondary structure elements in intermediate resolution cryo-EM reconstructions. In particular, secondary structure elements such as alpha helices show consistent patterns in cryo-EM data, and are visible as rod-like patterns of high density. The evolutionary tabu search strategy is applied to identify the placement of the different alpha helices, while the bidirectional expansion characterizes their length and curvature. The manuscript presents the validation of the approach at resolutions ranging between 6 and 14Å, a level of detail where alpha helices are visible. Up to resolution of 12 Å, the method measures sensitivities between 70-100% as estimated in experimental test cases, i.e. 70-100% of the alpha-helices were correctly predicted in an automatic manner in the experimental data. The three manuscripts presented in this PhD dissertation cover different computation methods for the integration and interpretation of cryo-EM reconstructions. The methods were developed in the molecular modeling software Sculptor (http://sculptor.biomachina.org) and are available for the scientific community interested in the multi-resolution modeling of cryo-EM data. The work spans a wide range of resolution covering multi-body refinement and registration at low-resolution along with annotation of consistent patterns at high-resolution. Such methods are essential for the modeling of cryo-EM data, and may be applied in other fields where similar spatial problems are encountered, such as medical imaging.
Resumo:
These three manuscripts are presented as a PhD dissertation for the study of using GeoVis application to evaluate telehealth programs. The primary reason of this research was to understand how the GeoVis applications can be designed and developed using combined approaches of HC approach and cognitive fit theory and in terms utilized to evaluate telehealth program in Brazil. First manuscript The first manuscript in this dissertation presented a background about the use of GeoVisualization to facilitate visual exploration of public health data. The manuscript covered the existing challenges that were associated with an adoption of existing GeoVis applications. The manuscript combines the principles of Human Centered approach and Cognitive Fit Theory and a framework using a combination of these approaches is developed that lays the foundation of this research. The framework is then utilized to propose the design, development and evaluation of “the SanaViz” to evaluate telehealth data in Brazil, as a proof of concept. Second manuscript The second manuscript is a methods paper that describes the approaches that can be employed to design and develop “the SanaViz” based on the proposed framework. By defining the various elements of the HC approach and CFT, a mixed methods approach is utilized for the card sorting and sketching techniques. A representative sample of 20 study participants currently involved in the telehealth program at the NUTES telehealth center at UFPE, Recife, Brazil was enrolled. The findings of this manuscript helped us understand the needs of the diverse group of telehealth users, the tasks that they perform and helped us determine the essential features that might be necessary to be included in the proposed GeoVis application “the SanaViz”. Third manuscript The third manuscript involved mix- methods approach to compare the effectiveness and usefulness of the HC GeoVis application “the SanaViz” against a conventional GeoVis application “Instant Atlas”. The same group of 20 study participants who had earlier participated during Aim 2 was enrolled and a combination of quantitative and qualitative assessments was done. Effectiveness was gauged by the time that the participants took to complete the tasks using both the GeoVis applications, the ease with which they completed the tasks and the number of attempts that were taken to complete each task. Usefulness was assessed by System Usability Scale (SUS), a validated questionnaire tested in prior studies. In-depth interviews were conducted to gather opinions about both the GeoVis applications. This manuscript helped us in the demonstration of the usefulness and effectiveness of HC GeoVis applications to facilitate visual exploration of telehealth data, as a proof of concept. Together, these three manuscripts represent challenges of combining principles of Human Centered approach, Cognitive Fit Theory to design and develop GeoVis applications as a method to evaluate Telehealth data. To our knowledge, this is the first study to explore the usefulness and effectiveness of GeoVis to facilitate visual exploration of telehealth data. The results of the research enabled us to develop a framework for the design and development of GeoVis applications related to the areas of public health and especially telehealth. The results of our study showed that the varied users were involved with the telehealth program and the tasks that they performed. Further it enabled us to identify the components that might be essential to be included in these GeoVis applications. The results of our research answered the following questions; (a) Telehealth users vary in their level of understanding about GeoVis (b) Interaction features such as zooming, sorting, and linking and multiple views and representation features such as bar chart and choropleth maps were considered the most essential features of the GeoVis applications. (c) Comparing and sorting were two important tasks that the telehealth users would perform for exploratory data analysis. (d) A HC GeoVis prototype application is more effective and useful for exploration of telehealth data than a conventional GeoVis application. Future studies should be done to incorporate the proposed HC GeoVis framework to enable comprehensive assessment of the users and the tasks they perform to identify the features that might be necessary to be a part of the GeoVis applications. The results of this study demonstrate a novel approach to comprehensively and systematically enhance the evaluation of telehealth programs using the proposed GeoVis Framework.