2 resultados para Manganese Permease

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphatidylcholine (PC) has been widely used in place of naturally occurring phosphatidylethanolamine (PE) in reconstitution of bacterial membrane proteins. However, PC does not support native structure or function for several reconstituted transport proteins. Lactose permease (LacY) of Escherichia coli, when reconstituted in E. coli phospholipids, exhibits energy-dependent uphill and energy-independent downhill transport function and proper conformation of periplasmic domain P7, which is tightly linked to uphill transport function. LacY expressed in cells lacking PE and containing only anionic phospholipids exhibits only downhill transport and lacks native P7 conformation. Reconstitution of LacY in the presence of E. coli-derived PE, but not dioleoyl-PC, results in uphill transport. We now show that LacY exhibits uphill transport and native conformation of P7 when expressed in a mutant of E. coli in which PC completely replaces PE even though the structure is not completely native. E. coli-derived PC and synthetic PC species containing at least one saturated fatty acid also support the native conformation of P7 dependent on the presence of anionic phospholipids. Our results demonstrate that the different effects of PE and PC species on LacY structure and function cannot be explained by differences in the direct interaction of the lipid head groups with specific amino acid residues alone but are due to more complex effects of the physical and chemical properties of the lipid environment on protein structure. This conclusion is supported by the effect of different lipids on the proper folding of domain P7, which indirectly influences uphill transport function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmembrane segments of polytopic membrane proteins once inserted are generally considered stably oriented due to the large free energy barrier for topological reorientation of adjacent extra-membrane domains. However, proper topology and function of the polytopic membrane protein lactose permease (LacY) of Escherichia coli is dependent on the membrane phospholipid composition revealing topological dynamics of transmembrane domains (Bogdanov, M., Heacock, P. N., and Dowhan, W. (2002) EMBO J. 21, 2107–2116). The high affinity phenylalanine permease PheP shares many topological similarities with LacY. In this study, mutant E. coli cells lacking phosphatidylethanolamine (PE) as a membrane component were used to evaluate the role of PE in the function and assembly of PheP. Active transport of phenylalanine by cells lacking PE was severely inhibited (both Vmax and Km were altered), whereas the PheP protein level in membranes was unaffected. Cysteine residues were introduced into predicted periplasmic or cytoplasmic segments of cysteine-less PheP, and the topology of the protein was explored using a membrane-impermeable thiol-specific biotinylated probe. Based on the biotinylation patterns of PheP in whole cells, the N-terminus and adjoining transmembrane hairpin of PheP adopted an inverted topological orientation in PE-lacking cells. Introduction of PE following the assembly of PheP triggered a reorientation of the N-terminus and adjacent hairpin to their native orientation associated with regain of wild type transport function. These results coupled with the results for LacY support a specific role for membrane lipid composition in determining topological organization and function of membrane proteins. Several other secondary symporters are compromised for activity in PE-lacking cells suggesting that lipid-assisted topogenesis is a general property of such transporters. The reversible orientation of these secondary transport proteins in response to a change of phospholipid composition might be a result of inherent conformational flexibility necessary for transport function or during protein assembly. ^