17 resultados para Mammary gland and metabolism

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogens have been implicated in the normal and neoplastic development of the mammary gland. Although estradiol is essential for early mammary differentiation, its role in postnatal ductal morphogenesis is poorly defined. We have found that neonatal estradiol exposure promotes precocious ductal outgrowth and terminal end bud formation in 21 day-old female mice. In contrast to this precocious phenotype, day 21 estradiol-treated epithelium, transplanted into control host fatpads, grows more slowly than control epithelium. Western and immunohistochemical (IHC) analyses indicate that neonatally-estrogenized glands have significantly less total ER than controls at days 7 and 21, and significantly more stromal ER at day 35. Estrogen receptor α (ER) is present in the gland when treatment is initiated at day 1. We propose that the premature activation of ER by neonatal estradiol exposure, during this critical perinatal period, is a key factor in the alteration of mammary growth and ER expression. ^ To address the role of ER function in mammary morphogenesis, we have developed an in vitro system to study the effect of estradiol exposure in vivo. Keratin and ER-positive mammary epithelial cell lines from 7, 21 and 35 day-old oil or estradiol treated mice have been established. Cell lines derived from estradiol-treated mice grow significantly slower than cells from control glands. Although the level of ER expressed by each cell line is correlated to its rate of growth, epithelial growth in vitro is estradiol-independent and antiestrogen-insensitive. Estradiol-induced transcription from an ERE-reporter in transiently-transfected cell lines confirms the functionality of the ER detected by western and IHC. However, there are no differences in estradiol-stimulated transcription between cell lines. ^ In conclusion, neonatal estradiol treatment alters the pattern of ER expression in mammary epithelial and stromal cells in vivo, and the growth of mammary epithelial cells in vivo and in vitro. When grown outside of the estrogenized host, exposed epithelium grows more slowly than the control. Therefore, an extra-epithelial factor is necessary for enhanced epithelial growth. Our model, which couples an in vivo-in vitro approach, can be used in the future to identify factors involved in the period of early mammary outgrowth and carcinogen susceptibility. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynein light chain 1 (DLC1) is a highly conserved and ubiquitously expressed protein which might have critical cellular function as total loss of DLC1 caused Drosophila embryonic death. Despite many proteins and RNAs interaction with it identified, DLC1's function(s) and regulation are largely unknown. Recently, DLC1 was identified as a physiological substrate of P21-activate kinase 1(Pak1) kinase from a human mammary cDNA library in a yeast-2-hybridization screening assay. Studies in primary human tumors and cell culture implicated that DLC1 could promote mammary cancerous phenotypes, and more importantly, Ser88 phosphorylation of DLC1by Pak1 kinase was found to be essential for DLC1's tumorigenic activities. Based on the above tissue culture studies, we hypothesized that Ser88 phosphorylation regulates DLC1. ^ To test this hypothesis, we generated two transgenic mouse models: MMTV-DLC1 and MMTV-DLC1-S88A mice with mammary specific expression of the DLC1 and DLC1-S88A cDNAs. Both of the transgenic mice mammary glands showed rare tumor incidence which indicated DLC1 alone may not be sufficient for tumorigenesis in vivo. However, these mice showed a significant alteration of mammary development. Mammary glands from the MMTV-DLC1 mice had hyperbranching and alveolar hyperplasia, with elevated cell proliferation. Intriguingly, these phenotypes were not seen in the mammary glands from the MMTV-S88A mice. Furthermore, while MMTV-DLC1 glands were normal during involution, MMTV-S88A mice showed accelerated mammary involution with increase apoptosis and altered expression of involution-associated genes. Further analysis of the MMTV-S88A glands showed they had increased steady state level of Bim protein which might be responsible for the early involution. Finally, our in vitro data showed that Ser88 phosphorylation abolished DLC1 dimer and consequently might disturb its interaction with Bim and destabilize Bim. ^ Collectively, our findings provided in vivo evidence that Ser88 phosphorylation of DLC1 can regulate DLC1's function. In addition, Ser88 phosphorylation might be critical for DLC1 dimer-monomer transition. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UPTAKE AND METABOLISM OF 5’-AMP IN THE ERYTHROCYTE PLAY KEY ROLES IN THE 5’-AMP INDUCED MODEL OF DEEP HYPOMETABOLISM Publication No. ________ Isadora Susan Daniels, B.A. Supervisory Professor: Cheng Chi Lee, Ph.D. Mechanisms that initiate and control the natural hypometabolic states of mammals are poorly understood. The laboratory developed a model of deep hypometabolism (DH) initiated by uptake of 5’-adenosine monophosphate (5’-AMP) into erythrocytes. Mice enter DH when given a high dose of 5’-AMP and the body cools readily. Influx of 5’-AMP appears to inhibit thermoregulatory control. In a 15°C environment, mice injected with 5’-AMP (0.5 mg/gw) enter a Phase I response in which oxygen consumption (VO2) drops rapidly to 1/3rd of euthermic levels. The Phase I response appears independent of body temperature (Tb). This is followed by gradual body temperature decline that correlates with VO2 decline, called Phase II response. Within 90 minutes, mouse Tb approaches 15°C, and VO2 is 1/10th of normal. Mice can remain several hours in this state, before gradually and safely recovering. The DH state translates to other mammalian species. Our studies show uptake and metabolism of 5’-AMP in erythrocytes causes biochemical changes that initiate DH. Increased AMP shifts the adenylate equilibrium toward ADP formation, consequently decreasing intracellular ATP. In turn, glycolysis slows, indicated by increased glucose and decreased lactate. 2,3-bisphosphoglycerate levels rise, allosterically reducing oxygen affinity for hemoglobin, and deoxyhemoglobin rises. Less oxygen transport to tissues likely triggers the DH model. The major intracellular pathway for AMP catabolism is catalyzed by AMP deaminase (AMPD). Multiple AMPD isozymes are expressed in various tissues, but erythrocytes only have AMPD3. Mice lacking AMPD3 were created to study control of the DH model, specifically in erythrocytes. Telemetric measurements demonstrate lower Tb and difficulty maintaining Tb under moderate metabolic stress. A more dramatic response to lower dose of 5’-AMP suggests AMPD activity in the erythrocyte plays an important role in control of the DH model. Analysis of adenylates in erythrocyte lysate shows 3-fold higher levels of ATP and ADP but similar AMP levels to wild-type. Taken together, results indicate alterations in energy status of erythrocytes can induce a hypometabolic state. AMPD3 control of AMP catabolism is important in controlling the DH model. Genetically reducing AMP catabolism in erythrocytes causes a phenotype of lower Tb and compromised ability to maintain temperature homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzene was studied in its target organ of effect, the bone marrow, with the micronucleus test and metaphase chromosomal analysis. Groups of 5 or 10, male and female CD-1 mice were treated with one or two p.o. or i.p. doses of benzene (440 mg/kg) or toluene (430, 860 or 1720 mg/kg) or both, and sacrificed 30 or 54h after the first dose. Benzene-treated animals were pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), (beta)-naphthoflavone ((beta)NF), SKF-525A, or Aroclor 1254. Toluene showed no clastogenic activity and reduced the clastogenic effect of co-administered benzene. None of the pretreatments protected against benzene clastogenicity. 3MC and (beta)NF greatly promoted benzene myeloclastogenicity. Dose response curves for benzene myeloclastogenicity were much steeper with 3MC induction than without. Micronuclei (MN) were 4-6 times higher by p.o. than i.p. benzene administration. This was not due to bacterial flora since no difference was found between germ-free and conventional males gavaged with benzene. A sensitive high-pressure liquid chromatographic method was developed and used to explore the relation between metabolic profiles of benzene in urine and MN after various pretreatments. Phenol (PH), trans-trans-muconic acid (MA) and hydroquinone (HQ) in the 48h male mouse urine accounted, respectively, for 12.8-22.8, 1.8-4.7 and 1.5-3.7% of the single oral dose of benzene (880, 440 and 220 mg/kg). Catechol (CT) was seen in trace amounts. MA was identified by ultraviolet and infrared spectroscopy and elemental analysis. Urinary metabolites--especially MA, HQ, and phenol glucuronide--correlated well with MN and were dependent on both the dose and the metabolism of benzene. Benzene metabolism was most inducible by cytochrome P-448 enzyme inducers, by p.o. > i.p., in males > females, and inhibited by toluene. Ph, CT or HQ administered p.o., 250, 150 and 250 mg/kg, respectively, or at 150 mg/kg x 2 after 3MC pretreatment, failed to reproduce the potent myeloclastogenicity of benzene. In fact, only HQ was mildly clastogenic. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arginine methylation has been implicated in the regulation of gene expression. The coactivator-associated arginine methyltransferase 1 (CARMI/PRMT4) binds the p160 family of steroid receptor coactivators (SRCs). This association enhances transcriptional activation by nuclear receptors. Here, we generated and characterized CARM1 knockout mice. Embryos with a targeted disruption of CARM1 are 35% smaller in size than the wild-type littermates and die perinatally. We also generated Carm1-/- and Carm1+/+ mouse embryonic fibroblasts and tested gene expression in response to estrogen. Estrogenresponsive gene expression was aberrant in Carm1-/- fibroblasts and embryos, thus emphasizing the role of arginine methylation as a transcription activation tag. We subsequently studied the role of CARM1 in estrogen signaling in viva in the mammary gland. Conditional knockout of CARM1 in mammary gland and Carml-1-embryonic mammary anlagen transplant experiments did not show any defects in growth and development of the glands. To further dissect the role of CARM1 in estrogen receptor mediated transactivation, we performed cDNA microarray and serial analysis of gene expression on Carm1-/- and Carm1+/+ embryos treated with the estrogen analog, DES. Our results indicate global changes in estrogen regulated genes as well as genes involved in lipid homeostasis. Marker genes for Peroxisome Proliferator Activated Receptor γ (PPARγ) activity, adipsin and aP2, are downregulated in the Carm1-/- embryos. Furthermore, OCT frozen sections of 18.5dpc embryos, processed simultaneously for oil red O staining to look for neutral fat, reveals greatly reduced brown fat accumulation in the Carm1-/- embryos in contrast to wild-type and gain-of-function Carm1 transgenic (ubiquitous) embryo. We used a well-established 3T3-L1 preadipocyte cell line to knockdown CARM1 by short hairpin RNA. 3T3-L1 cells with CARM1 knockdown showed greatly reduced potential to differentiate into mature lipid accumulating adipocytes upon administration of adipogenic stimuli. Ligand-dependent activation of reporter genes by the PPARγ receptor showed that PPRE-luciferase reporter activity was enhanced in the presence of CARM1, additionally, luciferase activity was reduced to background levels when enzyme dead CARM1 (CARM1-VLD) was used. Thus, in this study, we have identified novel pathways that use CARM1 as coactivator and showed that CARM1 functions as a key component of PPARγ receptor mediated gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The four basic helix-loop-helix myogenic transcription factors, myogenin, Myf5, MRF4, and MyoD are critical for embryonic skeletal muscle development. Myogenin is necessary for the terminal differentiation of myoblasts into myofibers during embryogenesis, but little is known about the roles played by myogenin in adult skeletal muscle function and metabolism. Furthermore, while metabolism is a well-studied physiological process, how it is regulated at the transcriptional level remains poorly understood. In this study, my aim was to determine the function of myogenin in adult skeletal muscle metabolism, exercise capacity, and regeneration. To investigate this, I utilized a mouse strain harboring the Myogflox allele and a Cre recombinase transgene, enabling the efficient deletion of myogenin in the adult mouse. Myogflox/flox mice were stressed physically through involuntary treadmill running and by breeding them with a strain harboring the Duchenne’s muscular dystrophy (DMDmdx) allele. Surprisingly, Myog-deleted animals exhibited an enhanced capacity for exercise, running farther and faster than their wild-type counterparts. Increased lactate production and utilization of glucose as a fuel source indicated that Myog-deleted animals exhibited an increased glycolytic flux. Hypoglycemic Myog-deleted mice no longer possessed the ability to outrun their wild-type counterparts, implying the ability of these animals to further deplete their glucose reserves confers their enhanced exercise capacity. Moreover, Myog-deleted mice exhibited an enhanced response to long-term exercise training. The mice developed a greater proportion of type 1 oxidative muscle fibers, and displayed increased levels of succinate dehydrogenase activity, indicative of increased oxidative metabolism. Mdx:Myog-deleted mice exhibited a similar phenotype, outperforming their mdx counterparts, although lagging behind wild-type animals. The morphology of muscle tissue from mdx:Myog-deleted mice appears to mimic that of mdx animals, indicating that myogenin is dispensable for adult skeletal muscle regeneration. Through global gene expression profiling and quantitative (q)RT-PCR, I identified a unique set of putative myogenin-dependent genes involved in regulating metabolic processes. These data suggest myogenin’s functions during adulthood are distinctly different than those during embryogenesis, and myogenin acts as a high-level transcription factor regulating metabolic activity in adult skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent progress in diagnostic tools allows many breast cancers to be detected at an early pre-invasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. 14-3-3 is a family of highly conserved and ubiquitously expressed proteins that are expressed in all eukaryotic organisms. In mammals there are seven isoforms, which bind to phosphor-serine/threonine residues regulating essential cellular processes such as signal transduction, cell cycle progression, and apoptosis. Our laboratory has discovered that a particular 14-3-3 family member, Zeta, is overexpressed in over 40% of breast tumor tissues. Furthermore, I examined the stage of breast disease in which 14-3-3ζ overexpression occurs and found that increased expression of 14-3-3ζ begins at the stage of atypical ductal hyperplasia, a very early stage of breast disease that confers increased risk for progress toward breast cancer. To determine whether 14-3-3ζ overexpression is a decisive early event in breast cancer, I overexpressed 14-3-3ζ in MCF10A cells, a non-transformed mammary epithelial cell (MEC) line and examined its impact on acini formation in a three dimensional (3D) culture model which simulates a basic unit of structure in the mammary gland. I discovered that 14-3-3ζ overexpression severely disrupted the acini architecture resulting in the disruption of polarity and luminal filling. Both are critical morphological events in the pre-neoplastic breast disease. This thesis focuses on the molecular mechanism of luminal filling. Proper lumen formation is a result of anoikis, a specific type apoptosis of cells not attached to the basement membrane. I found that 14-3-3ζ overexpression conferred a resistance to anoikis. Additionally, 14-3-3ζ overexpression in MCF10A cells and in MECs from 14-3-3ζ transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3ζ induced hyperactivation of the PI3K/Akt pathway which led to phosphorylation and translocation of the MDM2 to the nucleus resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3ζ overexpressing MCF10A acini in 3D cultures. These data suggest that 14-3-3ζ overexpression is a critical event in early breast disease and down-regulation of p53 is one of the mechanisms by which 14-3-3ζ alters MEC acini structure and may increase the risk of progression to breast cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite of much success of breast cancer treatment, basal-like breast cancer subtype still presented as a clinical challenge to mammary oncologist for its lack of available targeted therapy owing to their negative expression of targeted molecules, such as PgR, ERα and Her2. These molecules are all critical regulators in mammary gland development. EZH2, a histone methyltransferase, by forming Polycomb Repressive Complex 2(PRC2) can directly suppress a large array of developmental regulators. Overexpression of cyclin E has also been correlated with basal-like (triple-negative) breast cancer and poor prognosis. We found an important functional link between these two molecules. Cyclin E/Cdk2 can enhance PRC2 function by phosphorylating a specific residue of EZH2, threonine 416 and increasing EZH2's ability to complex with SUZ12. This regulation would further recruit whole PRC2 complex to core promoter regions of these developmental regulators. The local enrichment of PRC2 complex would then trimethylate H3K27 around the core promoter regions and suppress the expression of targeted genes, which included PgR, ERα, erbB2 and BRCA1. This widespread gene suppressive effect imposed by highly active PRC2 complex would then transform the lumina) type cell to adopt a basal-like phenotype. This finding suggested deregulated Cdk2 activity owing to cyclin E overexpression may contribute to basal phenotype through enhancing epigenetic silencing effects by regulating PRC2 function. Inhibition of Cdk2 activity in basal-like cancer cells may help release the suppression, reexpress the silenced genes and become responsive to existing anti-hormone or anti-Her2 therapy. From this study, the mechanisms described here provided a rationale to target basal-like breast cancer by new combinational therapy of Cdk2 inhibitors together with Lapatinib, or Aromatin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a mouse model was used to examine the effect of pubertal estrogen inhibition and a phytoestrogen-free diet on the development of mammary glands. The study question was does treatment with aromatase inhibitor during puberty increase susceptibility to breast cancer among cohorts that consumed a diet free of phytoestrogens. The study design consisted of a cohort of mice treated with aromatase inhibitor, letrozole, during puberty and a vehicular group that was used as a control. Both groups were fed a diet free of phytoestrogens from the time of weaning until sacrifice during adulthood. The study aimed to assess mammary gland development in terms of breast cancer risk. The methods employed in this research included morphological and histological analysis of mammary glands, as well as estradiol, RNA and protein analysis. The main finding of the study was that mice exposed to aromatase inhibitor during puberty developed mammary glands with specific characteristics suggestive of vulnerability to oncogenesis such as increased lateral branching, increased number of glands, increase ductal hyperplasia, and diminished expression of TGFβ and p27 protein levels. The conclusions suggest that puberty is a critical period in which the mammary gland is susceptible to environmental threats that may result in deleterious epigenetic effects leading to an increased breast cancer risk in adulthood. This study has several public health implications; the most significant is that environmental threats during puberty may result in adverse mammary gland development and that phytoestrogen sources in the diet are necessary for normal maturation of the mammary glands.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A panel discussion moderated by Dr. Thomas R. Cole, McGovern Chair in Medical Humanities and Director of the John P. McGovern Center for Humanities and Ethics at the University of Texas Health Science Center in Houston. Panelists include: Rabbi Samuel E. Karff, Rabbi Emeritus of Congregation Beth Israel and Associate Director of the John P. McGovern Center for Humanities and Ethics and Visiting Professor in the Department of Family Medicine at the University of Texas Health Science Center at the Texas Medical Center. Cardinal DiNardo, the second Archbishop of the Archdiocese of Galveston-Houston and the first cardinal archbishop from a diocese in the Southern United States. Dr. Sheldon Rubenfeld, Clinical Professor of Medicine at Baylor College of Medicine. He is Board Certified in Internal Medicine and in Endocrinology, Diabetes, and Metabolism, and is a Fellow in both the American College of Physicians and the American College of Endocrinology. Dr. Rubenfeld has taught "Healing by Killing: Medicine During the Third Reich" for three years and "Jewish Medical Ethics" for seven years at Baylor College of Medicine. He created a six-month program about Medicine and the Holocaust at Holocaust Museum Houston, including an exhibit entitled How Healing Becomes Killing: Eugenics, Euthanasia, Extermination and a series of lectures by distinguished speakers entitled "The Michael E. DeBakey Medical Ethics Lecture Series".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Meningomyelocele (MM) is a common human birth defect. MM is a disorder of neural development caused by contributions from genes and environmental factors that result in the NTD and lead to a spectrum of physical and neurocognitive phenotypes. METHODS: A multidisciplinary approach has been taken to develop a comprehensive understanding of MM through collaborative efforts from investigators specializing in genetics, development, brain imaging, and neurocognitive outcome. Patients have been recruited from five different sites: Houston and the Texas-Mexico border area; Toronto, Canada; Los Angeles, California; and Lexington, Kentucky. Genetic risk factors for MM have been assessed by genotyping and association testing using the transmission disequilibrium test. RESULTS: A total of 509 affected child/parent trios and 309 affected child/parent duos have been enrolled to date for genetic association studies. Subsets of the patients have also been enrolled for studies assessing development, brain imaging, and neurocognitive outcomes. The study recruited two major ethnic groups, with 45.9% Hispanics of Mexican descent and 36.2% North American Caucasians of European descent. The remaining patients are African-American, South and Central American, Native American, and Asian. Studies of this group of patients have already discovered distinct corpus callosum morphology and neurocognitive deficits that associate with MM. We have identified maternal MTHFR 667T allele as a risk factor for MM. In addition, we also found that several genes for glucose transport and metabolism are potential risk factors for MM. CONCLUSIONS: The enrolled patient population provides a valuable resource for elucidating the disease characteristics and mechanisms for MM development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin E is the regulatory subunit of the cyclin E/CDK2 complex that mediates the G1-S phase transition. N-terminal cleavage of cyclin E by elastase in breast cancer generates two low molecular weight (LMW) isoforms that exhibit both enhanced kinase activity and resistance to p21 and p27 inhibition compared to fulllength cyclin E. Clinically, approximately 27% of breast cancer patients overexpress LMW-E and associate with poor survival. Therefore, we hypothesize that LMW-E disrupts normal mammary acinar morphogenesis and serves as the initial route into breast tumor development. We first demonstrate that LMW-E overexpression in non-tumorigenic hMECs is sufficient to induce tumor formation in athymic mice significantly more than overexpression of full-length cyclin E and requires CDK2- associated kinase activity. Further in vivo passaging of these tumors augments LMW-E expression and tumorigenic potential. When subjected to acinar morphogenesis in vitro, LMW-E mediates significant morphological disruption by generating hyperproliferative and multi-acinar complexes. Proteomic analysis of patient tissues and tumor cells with high LMW-E expression reveals that the activation of the b-Raf-ERK1/2-mTOR pathway in concert with high LMW-E expression predicts poor patient survival. Combination treatment using roscovitine (CDK inhibitor) plus either rapamycin (mTOR inhibitor) or sorafenib (b-raf inhibitor) effectively prevented aberrant acinar formation in LMW-E-expressing cells by inducing the G1/S cell cycle arrest. In addition, the LMW-E-expressing tumor cells exhibit phenotypes characteristic of the EMT and enhanced cellular invasiveness. These tumor cells also enrich for cells with CSC phenotypes such as increased CD44hi/CD24lo population, enhanced mammosphere formation, and upregulation of ALDH expression and enzymatic activity. Furthermore, the CD44hi/CD24lo population also shows positive correlation with LMW-E expression in both the tumor cell line model and breast cancer patient samples (p<0.0001 & p=0.0435, respectively). Combination treatment using doxorubicin and salinomycin demonstrates synergistic cytotoxic effects in cells with LMW-E expression but not in those with full-length cyclin E expression. Finally, ProtoArray microarray identifies Hbo1 as a novel substrate of the cyclin E/CDK2 complex and its overexpression results in enrichment for CSCs. Collectively, these data emphasize the strong oncogenic potential of LMW-E in mammary tumorigenesis and suggest possible therapeutic strategies to treat breast cancer patients with high LMW-E expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neonatal estrogen treatment of BALB/c mice results in the unregulated proliferation of the cervicovaginal epithelium and eventually tumorigenesis. The conversion of the normally estrogen responsive cyclic proliferation of the vaginal epithelium to a continuous estrogen-independent pattern of growth is a complex phenomenon. The aim of this study was to gain an understanding of the mechanism(s) by which steroid hormone administration during a critical period of development alters the cyclic proliferation of vaginal epithelium, ultimately leading to carcinogenesis in the adult animal.^ The LJ6195 murine cervicovaginal tumor was induced by treating newborn female BALB/c mice with 20 $\mu$g 17$\beta$-estradiol plus 100 $\mu$g progesterone for the first 5 days after birth. In contrast to proliferation of the normal vaginal epithelium, proliferation of LJ6195 is not regulated by estradiol. Northern blot analysis of RNA from vaginal tracts of normal mice, neonatal-estrogen treated mice, and LJ6195 indicate that there is an alteration in the expression of several genes such as the estrogen receptor, c-fos, and HER2/neu. In response to neonatal estrogen treatment, the estrogen receptor is down regulated in the murine vaginal tract. Therefore, the estrogen-independent nature of this tissue is established as early as 3 months after treatment. There is strong evidence that the proliferation of LJ6195 is regulated through an autocrine growth pathway. The LJ6195 tumor expresses mRNA for the epidermal growth factor receptor. In addition, conditioned medium from the LJ6195 tumor cell line contains a growth factor(s) with epidermal growth factor-like activity. Conditioned medium from the LJ6195 cell line stimulated the proliferation of the EGF-dependent COMMA D mouse mammary gland cell line in a dose-dependent manner. The addition of an anti-mEGF-antibody to LJ6195 cell cultures significantly decreased growth. These results suggest that the EGF-receptor mediated growth pathway may play a role in regulating the estrogen-independent proliferation of the LJ6195 tumor. ^