9 resultados para Machine translation system

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphatidylserine synthase catalyzes the committed step in the synthesis of the major lipid of Escherichia coli, phosphatidylethanolamine, and may be involved in regulating the balance of the zwitterionic and anionic phospholipids in the membrane. Unlike the other enzymes involved in the biosynthesis of phospholipids in E. coli, phosphatidylserine synthase is not membrane associated but seems to have a high affinity for the ribosomal fraction of cells broken by various methods. Investigations on the enzyme in cell free extracts using glycerol gradient centrifugation revealed that the binding of the synthase to ribosomes may be prevented by the presence of highly basic compounds such as spermidine and by the presence of detergent-lipid substrate micelles under assay conditions. Thus phosphatidylserine synthase may not be ribosome associated under physiological conditions but associated with its membrane bound substrate (Louie and Dowhan (1980) J. Biol. Chem. 255, 1124).^ In addition homogeneous enzyme shows many of the properties of a membrane associated protein. It binds nonionic detergent such as Triton X-100, which is also required during purification of the enzyme. Optimal catalytic activity is also dependent on micelle or surface bound substrate. Phosphatidylserine synthase has been synthesized in vitro using a coupled transcription-translation system dependent on the presence of the cloned structural gene. The translation product was found to preferentially associate with the ribosomal fraction even in the presence of added E. coli membranes. Preferential membrane binding could be induced if the membranes were supplemented with the lipid substrate CDP-diacylglycerol. Similar effects were obtained with the acidic lipids phosphatidylglycerol and cardiolipin. On the other hand the zwitterionic lipid phosphatidylethanolamine and the lipid product phosphatidylserine did not cause any detectable membrane association. These results are consistent with the enzyme recognizing membrane bound substrate (Carman and Dowhan (1979) J. Biol. Chem. 254, 8391) and with the lipid charge influencing membrane interaction.^ Phosphatidylserine synthase is at a branch point in lipid metabolism, which may determine the distribution of the zwitterionic and anionic phospholipids in the membrane. The results obtained here indicate phosphatidylserine synthase may play a significant role in membrane lipid biosynthesis by maintaining charge balance of the E. coli membrane. In determining the localization of phosphatidylserine synthase in vitro one may have a better understanding of its function and control in vivo and may also have a better understanding of its role in membrane assembly.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphatidylserine decarboxylase of E. coli, a cytoplasmic membrane protein, catalyzes the formation of phosphatidylethanolamine, the principal phospholipid of the organism. The activity of the enzyme is dependent on a covalently bound pyruvate (Satre and Kennedy (1978) J. Biol. Chem. 253, 479-483). This study shows that the enzyme consists of two nonidentical subunits, $\alpha$ (Mr = 7,332) and $\beta$ (Mr = 28,579), with the pyruvate prosthetic group in amide linkage to the amino-terminus of the $\alpha$ subunit. Partial protein sequence and DNA sequence analysis reveal that the two subunits are derived from a proenzyme ($\pi$ subunit, Mr = 35,893) through a post-translational event. During the conversion of the proenzyme to the $\alpha$ and $\beta$ subunits, the peptide bond between Gly253-Ser254 is cleaved, and Ser254 is converted to the pyruvate prosthetic group at the amino-terminus of the $\alpha$ subunit (Li and Dowhan (1988) J. Biol. Chem. 263, 11516-11522).^ The proenzyme cannot be detected in cells carrying either single or multiple copies of the gene (psd), but can be observed in a T7 RNA polymerase/promoter and transcription-translation system. The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. Changing of the Ser254 to cysteine (S254C) or threonine (S254T) slows the cleavage rate dramatically and results in mutants with a half-time for processing of around 2-4 h. Change of the Ser254 to alanine (S254A) blocks the cleavage of the proenzyme. The reduced processing rate with the mutations of the proenzyme is consistent with less of the functional enzyme being made. Mutants S254C and S254T produce $\sim$15% and $\sim$1%, respectively, of the activity of the wild-type allele, but can still complement a temperature-sensitive mutant of the psd locus. Neither detectable activity nor complementation is observed by mutant S254A. These results are consistent with the hydroxyl-group of the Ser254 playing a critical role in the cleavage of the peptide bond Gly253-Ser254 of the pro-phosphatidylserine decarboxylase, and support the mechanism proposed by Snell and co-workers (Recsei and Snell (1984) Annu. Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ribosome is a molecular machine that produces proteins in a cell. It consists of RNAs (rRNAs) and proteins. The rRNAs have been implicated in various aspects of protein biosynthesis supporting the idea that they function directly in translation. In this study the direct involvement of rRNA in translation termination was hypothesized and both genetic and biochemical strategies were designed to test this hypothesis. As a result, several regions of rRNAs from both ribosomal subunits were implicated in termination. More specifically, the mutation G1093A in an RNA of the large subunit (23S rRNA) and the mutation C1054A in the small subunit RNA (16S rRNA) of the Escherichia coli ribosome, were shown to affect the binding of the proteins that drive termination, RF1 and RF2. These mutations also caused defects in catalysis of peptidyl-tRNA hydrolysis, the last step of termination. Furthermore, the mutations affected the function of RF2 to a greater extent than that of RF1, a striking result considering the similarity of the RFs. The major defect in RF2 function was consistent with in vivo characteristics of the mutants and can be explained by the inability of the mutant rRNA sites to activate the hydrolytic center, that is the catalytic site for peptidyl-tRNA hydrolysis. Consistent with this explanation is the possibility of a direct interaction between the G1093-region (domain II of 23S rRNA) and the hydrolytic center (most likely domains IV–VI of 23S rRNA). To test that interaction hypothesis selections were performed for mutations in domains IV–VI that compensated for the growth defects caused by G1093A. Several compensatory mutations were isolated which not only restored growth in the presence of G1093A but also appeared to compensate for the termination defects caused by the G1093A. Therefore these results provided genetic evidence for an intramolecular interaction that might lead to peptidyl-tRNA hydrolysis. Finally, a new approach to the study of rRNA involvement in termination was designed. By screening a library of rRNA fragments, a fragment of the 23S rRNA (nt 74-136) was identified that caused readthrough of UGA. The antisense RNA fragment produced a similar effect. The data implicated the corresponding segment of intact 23S rRNA in termination. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine sarcoma viruses constitute a class of replication-defective retroviruses. Cellular transformation may be induced by these viruses in vitro; whereas, fibrosarcomas may result in animals infected with them in vivo (Tooze, 1973; Bishop, 1978). Hybridization studies suggest that murine sarcoma viruses arose by recombination between nondefective murine leukemia virus sequences and certain cellular sequences present in uninfected mouse cells (Hu et al., 1977). A specific gene product, however, has not been implicated in murine sarcoma virus transformation.^ One line of murine sarcoma virus-producing cells, Mo-MuSV-clone 124, (Ball et al., 1973), was studied biochemically because it mainly produces the sarcoma virus as a pseudotype packaged with helper murine leukemia virus proteins. The sarcoma viral RNA was translated in a sophisticated cell-free protein synthesizing system (Murphy and Arlinghaus, 1978). The translation products were analyzed by a number of techniques, including electrophoresis in denaturing gels of SDS polyacrylamide, immunoprecipitation, and peptide mapping. The major products of the total RNA purified from the virus preparation were shown to have molecular weights of about 63,000 (P63('gag)), 42,000 (P42), 40,000 (P40), 38,000 (P38), and 23,000 (P23). The size class of mRNA coding for each of the cell-free products was estimated using a poly(A) selection technique and sucrose gradient fractionation. These analyses were used to localize the coding information related to each of the in vitro synthesized cell-free products within the sarcoma virus genome.^ The major findings of these studies were: (1) the 5' half of the sarcoma viral RNA codes for the 63,000 dalton polypeptide and 42,000 - 38,000 dalton polypeptides derived from the "gag" gene; and (2) the 3' half of the sarcoma viral RNA codes for a 38,000 dalton polypeptide and possibly derived from the cellular acquired sequences. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Traditional patient-specific IMRT QA measurements are labor intensive and consume machine time. Calculation-based IMRT QA methods typically are not comprehensive. We have developed a comprehensive calculation-based IMRT QA method to detect uncertainties introduced by the initial dose calculation, the data transfer through the Record-and-Verify (R&V) system, and various aspects of the physical delivery. Methods: We recomputed the treatment plans in the patient geometry for 48 cases using data from the R&V, and from the delivery unit to calculate the “as-transferred” and “as-delivered” doses respectively. These data were sent to the original TPS to verify transfer and delivery or to a second TPS to verify the original calculation. For each dataset we examined the dose computed from the R&V record (RV) and from the delivery records (Tx), and the dose computed with a second verification TPS (vTPS). Each verification dose was compared to the clinical dose distribution using 3D gamma analysis and by comparison of mean dose and ROI-specific dose levels to target volumes. Plans were also compared to IMRT QA absolute and relative dose measurements. Results: The average 3D gamma passing percentages using 3%-3mm, 2%-2mm, and 1%-1mm criteria for the RV plan were 100.0 (σ=0.0), 100.0 (σ=0.0), and 100.0 (σ=0.1); for the Tx plan they were 100.0 (σ=0.0), 100.0 (σ=0.0), and 99.0 (σ=1.4); and for the vTPS plan they were 99.3 (σ=0.6), 97.2 (σ=1.5), and 79.0 (σ=8.6). When comparing target volume doses in the RV, Tx, and vTPS plans to the clinical plans, the average ratios of ROI mean doses were 0.999 (σ=0.001), 1.001 (σ=0.002), and 0.990 (σ=0.009) and ROI-specific dose levels were 0.999 (σ=0.001), 1.001 (σ=0.002), and 0.980 (σ=0.043), respectively. Comparing the clinical, RV, TR, and vTPS calculated doses to the IMRT QA measurements for all 48 patients, the average ratios for absolute doses were 0.999 (σ=0.013), 0.998 (σ=0.013), 0.999 σ=0.015), and 0.990 (σ=0.012), respectively, and the average 2D gamma(5%-3mm) passing percentages for relative doses for 9 patients was were 99.36 (σ=0.68), 99.50 (σ=0.49), 99.13 (σ=0.84), and 98.76 (σ=1.66), respectively. Conclusions: Together with mechanical and dosimetric QA, our calculation-based IMRT QA method promises to minimize the need for patient-specific QA measurements by identifying outliers in need of further review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agrobacterium tumefaciens uses the VirB/D4 type IV secretion system (T4SS) to translocate oncogenic DNA (T-DNA) and protein substrates to plant cells. Independent of VirD4, the eleven VirB proteins are also essential for elaboration of a conjugative pilus termed the T pilus. The focus of this thesis is the characterization and analysis of two VirB proteins, VirB6 and VirB9, with respect to substrate translocation and T pilus biogenesis. Observed stabilizing effects of VirB6 on other VirB subunits and results of protein-protein interaction studies suggest that VirB6 mediates assembly of the secretion machine and T pilus through interactions with VirB7 and VirB9. Topology studies support a model for VirB6 as a polytopic membrane protein with a periplasmic N terminus, a large internal periplasmic loop, five transmembrane segments, and a cytoplasmic C terminus. Topology studies and Transfer DNA immunoprecipitation (TrIP) assays identified several important VirB6 functional domains: (i) the large internal periplasmic loop mediates interaction of VirB6 with the T-DNA, (ii) the membrane spanning region carboxyl-terminal to the large periplasmic loop mediates substrate transfer from VirB6 to VirB8, and (iii) the terminal regions of VirB6 are required for substrate transfer to VirB2 and VirB9. To analyze structure-function relationships of VirB9, the phenotypic consequences of dipeptide insertion mutations were characterized. Substrate discriminating mutations were shown to selectively export the oncogenic T-DNA and VirE2 to plant cells or a mobilizable IncQ plasmid to bacterial cells. Mutations affecting VirB9 interactions with VirB7 and VirB10 were localized to the C- and N- terminal regions respectively. Additionally, “uncoupling” mutations identified in VirB11 and VirB6 that block T pilus assembly, but not substrate transfer to recipient cells, were also identified in VirB9. These results in conjunction with computer analysis establish that VirB9, like VirB6, is also composed of distinct regions or domains that contribute in various ways to secretion channel activity and T pilus assembly. Lastly, in vivo immunofluorescent studies suggest that VirB9 localizes to the outer membrane and may play a role similar to that of secretion/ushers of types II and III secretion systems to facilitate substrate translocation across this final bacterial barrier. ^