10 resultados para Macaca fascicularis
em DigitalCommons@The Texas Medical Center
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.
Resumo:
V2 has long been recognized to contain functionally distinguishable compartments that are correlated with the stripelike pattern of cytochrome oxidase activity. Early electrophysiological studies suggested that color, direction/disparity, and orientation selectivity were largely segregated in the thin, thick, and interstripes, respectively. Subsequent studies revealed a greater degree of homogeneity in the distribution of response properties across stripes, yet color-selective cells were still found to be most prevalent in the thin stripes. Optical recording studies have demonstrated that thin stripes contain both color-preferring and luminance-preferring modules. These thin stripe color-preferring modules contain spatially organized hue maps, whereas the luminance-preferring modules contain spatially organized luminance-change maps. In this study, the neuronal basis of these hue maps was determined by characterizing the selectivity of neurons for isoluminant hues in multiple penetrations within previously characterized V2 thin stripe hue maps. The results indicate that neurons within the superficial layers of V2 thin stripe hue maps are organized into columns whose aggregated hue selectivity is closely related to the hue selectivity of the optically defined hue maps. These data suggest that thin stripes contain hue maps not simply because of their moderate percentage of hue-selective neurons, but because of the columnar and tangential organization of hue selectivity.
Resumo:
Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^
Resumo:
BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.
Resumo:
PURPOSE: To establish the identity of a prominent protein, approximately 70 kDa, that is markedly increased in the retina of monkeys with experimental glaucoma compared with the fellow control retina, the relationship to glaucoma severity, and its localization in the retina. METHODS: Retinal extracts were subjected to 2-D gel electrophoresis to identify differentially expressed proteins. Purified peptides from the abundant 70 kDa protein were analyzed and identified by liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) separation, and collision-induced dissociation sequencing. Protein identity was performed on MASCOT (Matrix Science, Boston, MA) and confirmed by Western blot. The relationship between the increase in this protein and glaucoma severity was investigated by regression analyses. Protein localization in retina was evaluated by immunohistochemistry with confocal imaging. RESULTS: The abundant protein was identified as Macaca mulatta serum albumin precursor (67 kDa) from eight non-overlapping proteolytic fragments, and the identity was confirmed by Western blot. The average increase in retinal albumin content was 2.3 fold (P = 0.015). In glaucoma eyes, albumin was localized to some neurons of the inner nuclear layer, in the inner plexiform layer, and along the vitreal surface, but it was only found in blood vessels in control retinas. CONCLUSIONS: Albumin is the abundant protein found in the glaucomatous monkey retinas. The increased albumin is primarily localized to the inner retina where oxidative damage associated with experimental glaucoma is known to be prominent. Since albumin is a major antioxidant, the increase of albumin in the retinas of eyes with experimental glaucoma may serve to protect the retina against oxidative damage.
Resumo:
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.
Resumo:
Visual short-term memory (VSTM) is the storage of visual information over a brief time period (usually a few seconds or less). Over the past decade, the most popular task for studying VSTM in humans has been the change detection task. In this task, subjects must remember several visual items per trial in order to identify a change following a brief delay interval. Results from change detection tasks have shown that VSTM is limited; humans are only able to accurately hold a few visual items in mind over a brief delay. However, there has been much debate in regard to the structure or cause of these limitations. The two most popular conceptualizations of VSTM limitations in recent years have been the fixed-capacity model and the continuous-resource model. The fixed-capacity model proposes a discrete limit on the total number of visual items that can be stored in VSTM. The continuous-resource model proposes a continuous-resource that can be allocated among many visual items in VSTM, with noise in item memory increasing as the number of items to be remembered increases. While VSTM is far from being completely understood in humans, even less is known about VSTM in non-human animals, including the rhesus monkey (Macaca mulatta). Given that rhesus monkeys are the premier medical model for humans, it is important to understand their VSTM if they are to contribute to understanding human memory. The primary goals of this study were to train and test rhesus monkeys and humans in change detection in order to directly compare VSTM between the two species and explore the possibility that direct species comparison might shed light on the fixed-capacity vs. continuous-resource models of VSTM. The comparative results suggest qualitatively similar VSTM for the two species through converging evidence supporting the continuous-resource model and thereby establish rhesus monkeys as a good system for exploring neurophysiological correlates of VSTM.
Resumo:
Three rhesus monkeys (Macaca mulatta) and four pigeons (Columba livia) were trained in a visual serial probe recognition (SPR) task. A list of visual stimuli (slides) was presented sequentially to the subjects. Following the list and after a delay interval, a probe stimulus was presented that could be either from the list (Same) or not from the list (Different). The monkeys readily acquired a variable list length SPR task, while pigeons showed acquisition only under constant list length condition. However, monkeys memorized the responses to the probes (absolute strategy) when overtrained with the same lists and probes, while pigeons compared the probe to the list in memory (relational strategy). Performance of the pigeon on 4-items constant list length was disrupted when blocks of trials of different list lengths were imbedded between the 4-items blocks. Serial position curves for recognition at variable probe delays showed better relative performance on the last items of the list at short delays (0-0.5 seconds) and better relative performance on the initial items of the list at long delays (6-10 seconds for the pigeons and 20-30 seconds for the monkeys and a human adolescent). The serial position curves also showed reliable primacy and recency effects at intermediate probe delays. The monkeys showed evidence of using a relational strategy in the variable probe delay task. The results are the first demonstration of relational serial probe recognition performance in an avian and suggest similar underlying dynamic recognition memory mechanisms in primates and avians. ^
Resumo:
Deficits in social cognition are prominent symptoms of many human psychiatric disorders, but the origin of such deficits remains largely unknown. To further current knowledge regarding the neural network mediating social cognition, the present research program investigated the individual contributions of two temporal lobe structures, the amygdala and hippocampal formation, and one frontal lobe region, the orbital frontal cortex (Areas 11 and 13), to primate social cognition. Based on previous research, we hypothesized that the amygdala, hippocampal formation and orbital frontal cortex contribute significantly to the formation of new social relationships, but less to the maintenance of familiar ones. ^ Thirty-six male rhesus macaques (Macaca mulatta) served as subjects, and were divided into four experimental groups: Neurotoxic amygdala lesion (A-ibo, n = 9), neurotoxic or aspiration orbital frontal cortex lesion (O, n = 9), neurotoxic hippocampal formation lesion (H-ibo, n = 9) or sham-operated control (C, n = 9). Six social groups (tetrads) were created, each containing one member from each experimental group. The effect of lesion on established social relationships was assessed during pre- and post-surgical unrestrained social interactions, whereas the effect of lesion on the formation of new relationships was assessed during an additional phase of post-surgical testing with shuffled tetrad membership. Results indicated that these three neural structures each contribute significantly to both the formation and maintenance of social relationships. Furthermore, the amygdala appears to primarily mediate normal responses to threatening social signals, whereas the orbital frontal cortex plays a more global role in social cognition by mediating responses to both threatening and affiliative social signals. By contrast, the hippocampal formation seems to contribute to social cognition indirectly by providing access to previous experience during social judgments. ^ These conclusions were further investigated with three experiments that measured behavioral and physiological (stress hormone) reactivity to threatening stimuli, and three additional experiments that measured subjects' ability to flexibly alter behavioral responses depending on the incentive value of a food reinforcer. Data from these six experiments further confirmed and strengthened the three conclusions originating from the social behavior experiments and, when combined with the current literature, helped to formulate a simple, but testable, theoretical model of primate social cognition. ^
Resumo:
Adult monkeys (Macaca mulatta) with lesions of the hippocampal formation, perirhinal cortex, areas TH/TF, as well as controls were tested on tasks of object, spatial and contextual recognition memory. ^ Using a visual paired-comparison (VPC) task, all experimental groups showed a lack of object recognition relative to controls, although this impairment emerged at 10 sec with perirhinal lesions, 30 sec with areas TH/TF lesions and 60 sec with hippocampal lesions. In contrast, only perirhinal lesions impaired performance on delayed nonmatching-to-sample (DNMS), another task of object recognition memory. All groups were tested on DNMS with distraction (dDNMS) to examine whether the use of active cognitive strategies during the delay period could enable good performance on DNMS in spite of impaired recognition memory (revealed by the VPC task). Distractors affected performance of animals with perirhinal lesions at the 10-sec delay (the only delay in which their DNMS performance was above chance). They did not affect performance of animals with areas TH/TF lesions. Hippocampectomized animals were impaired at the 600-sec delay (the only delay at which prevention of active strategies would likely affect their behavior). ^ While lesions of areas TH/TF impaired spatial location memory and object-in-place memory, hippocampal lesions impaired only object-in-place memory. The pattern of results for perirhinal cortex lesions on the different task conditions indicated that this cortical area is not critical for spatial memory. ^ Finally, all three lesions impaired contextual recognition memory processes. The pattern of impairment appeared to result from the formation of only a global representation of the object and background, and suggests that all three areas are recruited for associating information across sources. ^ These results support the view that (1) the perirhinal cortex maintains storage of information about object and the context in which it is learned for a brief period of time, (2) areas TH/TF maintain information about spatial location and form associations between objects and their spatial relationship (a process that likely requires additional time) and (3) the hippocampal formation mediates associations between objects, their spatial relationship and the general context in which these associations are formed (an integrative function that requires additional time). ^