4 resultados para MUCOUS MEMBRANES

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chagas’ disease, also called American Trypanosomiasis, is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. T. cruzi is spread by triatomine insects, commonly referred to as ‘kissing bugs.’ After the insect takes a blood meal from its animal or human host, it usually defecates near the bite wound. The parasite is present in the feces, and when rubbed into the bite wound or mucous membranes by the host, infection ensues. Chagas’ disease is highly endemic in Central and South America where it originated. Many people in these endemic areas live in poor conditions surrounded by animals, mainly dogs, that can serve as a possible link to human infection. In Chagas’ endemic countries, dogs can be used as a sentinel to infer risk for human infection. In Texas, the prevalence of Chagas’ and risk for human infection is largely unknown. This study aimed to determine the prevalence of Chagas’ disease in shelter dogs in Houston, Texas and the Rio Grande Valley region by using an immunochromatographic assay (Chagas’ Stat-Pak) to test for the presence of T. cruzi antibodies. Of the 822 samples tested, 26 were found to be positive (3.2%). In both locations, Chagas’ prevalence increased over time. This study found that dogs, especially strays, can serve as sentinels for disease activity. Public health authorities can implement this strategy to understand the level of Chagas’ activity in a defined geographic area and prevent human infection.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells. In the present study, we report that RA up-regulates CREB gene expression and that, using 5'-serial deletion promoter analysis and mutagenesis analyses, two Sp1 (specificity protein 1)-binding sites located at nt -217 and -150, which flank the transcription initiation site, are essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nt -119 and -98 contributed to basal promoter activity. Interestingly, RA also up-regulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using siRNA (small interfering RNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA up-regulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in up-regulating human CREB gene expression. This result implies that co-operation of these two transcription factors plays a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The nonsteroidal anti-inflammatory drug (NSAID), indomethacin (Indo), has a large number of divergent biological effects, the molecular mechanism(s) for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC) and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC) and cholesterol that mimics biomembranes. METHODOLOGY/PRINCIPAL FINDINGS: Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET) study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes. CONCLUSION/SIGNIFICANCE: Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation was designed as a hospital-based, historical cohort study. The objective of the study was to determine the association between premature rupture of the membranes (PROM) and its duration on neonatal sepsis, infection, and mortality. Neonates born alive with gestational ages between 25 and 35 weeks from singleton pregnancies complicated by PROM were selected. Each of the 507 neonates was matched on gestational age, gender, ethnicity, and month of birth with a neonate without the complication of PROM.^ Data were abstracted from deliveries between January 1979 and December 1985 describing the mother's demographics, labor and delivery treatments and complications, the neonate's demographics, infection status, and medical care. The matched pairs analysis reveals a significant increase in risk of neonatal sepsis (RR = 3.5) and neonatal infection (RR = 2.4) among preterm births complicated by PROM, with a PROM exposure contributing an excess 4 to 5 cases of sepsis per 100 infants (RD = 0.04 for infection and RD = 0.05 for sepsis). Generally PROM remains an important risk factor for sepsis and infection when controlling for various other characteristics, and the risk difference remains constant.^ PROM was not significantly associated with neonatal mortality (RR = 1.02). There is an increase in risk difference for mortality associated with PROM among septic and infected infants, but it is not significant.^ A clear increase in risk of sepsis and infection from PROM occurs when durations of PROM are long (more than 48 hours), e.g., for sepsis the RR is 2.42 for short durations and RR is 6.0 for long durations. No such risk with long duration appears for neonatal mortality.^ This study indicates the importance of close observation of neonates with PROM for sepsis and infection so treatment can be initiated early. However, prematurity is the major risk for sepsis and the practice of early delivery to avoid prolonged durations of PROM does not alter the magnitude of risk. The greatest protection against these infection complications was provided when the neonate weighed over 1500 grams or had more than 33 weeks gestation. ^