4 resultados para MRI quantitative
em DigitalCommons@The Texas Medical Center
Resumo:
Serial quantitative and correlative studies of experimental spinal cord injury (SCI) in rats were conducted using three-dimensional magnetic resonance imaging (MRI). Correlative measures included morphological histopathology, neurobehavioral measures of functional deficit, and biochemical assays for N-acetyl-aspartate (NAA), lactate, pyruvate, and ATP. A spinal cord injury device was characterized and provided a reproducible injury severity. Injuries were moderate and consistent to within $\pm$20% (standard deviation). For MRI, a three-dimensional implementation of the single spin-echo FATE (Fast optimum angle, short TE) pulse sequence was used for rapid acquisition, with a 128 x 128 x 32 (x,y,z) matrix size and a 0.21 x 0.21 x 1.5 mm resolution. These serial studies revealed a bimodal characteristic in the evolution in MRI pathology with time. Early and late phases of SCI pathology were clearly visualized in $T\sb2$-weighted MRI, and these corresponded to specific histopathological changes in the spinal cord. Centralized hypointense MRI regions correlated with evidence of hemorrhagic and necrotic tissue, while surrounding hyperintense regions represented edema or myelomalacia. Unexpectedly, $T\sb2$-weighted MRI pathology contrast at 24 hours after injury appeared to subside before peaking at 72 hours after injury. This change is likely attributable to ongoing secondary injury processes, which may alter local $T\sb2$ values or reduce the natural anisotropy of the spinal cord. MRI, functional, and histological measures all indicated that 72 hours after injury was the temporal maximum for quantitative measures of spinal cord pathology. Thereafter, significant improvement was seen only in neurobehavioral scores. Significant correlations were found between quantitated MRI pathology and histopathology. Also, NAA and lactate levels correlated with behavioral measures of the level of function deficit. Asymmetric (rostral/caudal) changes in NAA and lactate due to injury indicate that rostral and caudal segments from the injury site are affected differently by the injury. These studies indicate that volumetric quantitation of MRI pathology from $T\sb2$-weighted images may play an important role in early prediction of neurologic deficit and spinal cord pathology. The loss of $T\sb2$ contrast at 24 hours suggests MR may be able to detect certain delayed mechanisms of secondary injury which are not resolved by histopathology or other radiological modalities. Furthermore, in vivo proton magnetic resonance spectroscopy (MRS) studies of SCI may provide a valuable addition source of information about changes in regional spinal cord lactate and NAA levels, which are indicative of local metabolic and pathological changes. ^
Resumo:
Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^
Resumo:
DCE-MRI is an important technique in the study of small animal cancer models because its sensitivity to vascular changes opens the possibility of quantitative assessment of early therapeutic response. However, extraction of physiologically descriptive parameters from DCE-MRI data relies upon measurement of the vascular input function (VIF), which represents the contrast agent concentration time course in the blood plasma. This is difficult in small animal models due to artifacts associated with partial volume, inflow enhancement, and the limited temporal resolution achievable with MR imaging. In this work, the development of a suite of techniques for high temporal resolution, artifact resistant measurement of the VIF in mice is described. One obstacle in VIF measurement is inflow enhancement, which decreases the sensitivity of the MR signal to the presence of contrast agent. Because the traditional techniques used to suppress inflow enhancement degrade the achievable spatiotemporal resolution of the pulse sequence, improvements can be achieved by reducing the time required for the suppression. Thus, a novel RF pulse which provides spatial presaturation contemporaneously with the RF excitation was implemented and evaluated. This maximizes the achievable temporal resolution by removing the additional RF and gradient pulses typically required for suppression of inflow enhancement. A second challenge is achieving the temporal resolution required for accurate characterization of the VIF, which exceeds what can be achieved with conventional imaging techniques while maintaining adequate spatial resolution and tumor coverage. Thus, an anatomically constrained reconstruction strategy was developed that allows for sampling of the VIF at extremely high acceleration factors, permitting capture of the initial pass of the contrast agent in mice. Simulation, phantom, and in vivo validation of all components were performed. Finally, the two components were used to perform VIF measurement in the murine heart. An in vivo study of the VIF reproducibility was performed, and an improvement in the measured injection-to-injection variation was observed. This will lead to improvements in the reliability of quantitative DCE-MRI measurements and increase their sensitivity.
Resumo:
The PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) magnetic resonance imaging (MRI) technique has inherent advantages over other fast imaging methods, including robust motion correction, reduced image distortion, and resistance to off-resonance effects. These features make PROPELLER highly desirable for T2*-sensitive imaging, high-resolution diffusion imaging, and many other applications. However, PROPELLER has been predominantly implemented as a fast spin-echo (FSE) technique, which is insensitive to T2* contrast, and requires time-inefficient signal averaging to achieve adequate signal-to-noise ratio (SNR) for many applications. These issues presently constrain the potential clinical utility of FSE-based PROPELLER. ^ In this research, our aim was to extend and enhance the potential applications of PROPELLER MRI by developing a novel multiple gradient echo PROPELLER (MGREP) technique that can overcome the aforementioned limitations. The MGREP pulse sequence was designed to acquire multiple gradient-echo images simultaneously, without any increase in total scan time or RF energy deposition relative to FSE-based PROPELLER. A new parameter was also introduced for direct user-control over gradient echo spacing, to allow variable sensitivity to T2* contrast. In parallel to pulse sequence development, an improved algorithm for motion correction was also developed and evaluated against the established method through extensive simulations. The potential advantages of MGREP over FSE-based PROPELLER were illustrated via three specific applications: (1) quantitative T2* measurement, (2) time-efficient signal averaging, and (3) high-resolution diffusion imaging. Relative to the FSE-PROPELLER method, the MGREP sequence was found to yield quantitative T2* values, increase SNR by ∼40% without any increase in acquisition time or RF energy deposition, and noticeably improve image quality in high-resolution diffusion maps. In addition, the new motion algorithm was found to improve the performance considerably in motion-artifact reduction. ^ Overall, this work demonstrated a number of enhancements and extensions to existing PROPELLER techniques. The new technical capabilities of PROPELLER imaging, developed in this thesis research, are expected to serve as the foundation for further expanding the scope of PROPELLER applications. ^