4 resultados para MR damper
em DigitalCommons@The Texas Medical Center
Resumo:
High resolution, vascular magnetic resonance imaging of the spine region in small animals poses several challenges. The small anatomical features, extravascular diffusion, and the low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomical features of the perispinal vasculature not visible with conventional contrast agent (Gd-DTPA).
Resumo:
BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^