3 resultados para MONOLAYERS
em DigitalCommons@The Texas Medical Center
Resumo:
Colorectal cancer (CRC) develops from multiple progressive modifications of normal intestinal epithelium into adenocarcinoma. Loss of cell polarity has been implicated as an early event in this process, but the molecular players involved are not well known. NHERF1 (Na+/H+ Exchanger Regulatory Factor 1) is an adaptor protein with apical membrane localization in polarized epithelia. In this study, we tested our hypothesis that NHERF1 plays a role in CRC. We examined surgical CRC resection specimens for changes in NHERF1 expression, and modeled these changes in two- and three-dimensional (2D and 3D) Caco-2 CRC cell systems. NHERF1 had significant alterations from normal to adenoma and carcinoma transitions (2=38.5, d.f.=4, P<0.001), displaying apical membrane localization in normal tissue but loss of expression in adenoma and ectopic overexpression in carcinoma. In Caco-2 cell models, NHERF1 depletion induced epithelial-mesenchymal-transition in 2D cell monolayers and disruption of apical-basal polarity in 3D cyst system. The mesenchymal phenotype of NHERF1-depleted cells was fully restored by re-expression of NHERF1 at the apical membrane. Cytoplasmic and nuclear NHERF1 re-expression not only failed to restore the epithelial phenotype but led to more aggressive phenotypes. Our findings suggest that membrane NHERF1 is an important regulator of epithelial morphogenesis, and that changes in NHERF1 expression correlate with CRC progression. NHERF1 loss and ectopic expression that induce massive disruption of epithelial cell polarity may, thereby, mark important steps in CRC development.
Resumo:
During the process of cancer metastasis, the majority of circulating tumor cells arrest in microcapillary beds and then rapidly die. To study whether vascular endothelial cells can directly lyse tumor cells, we isolated vascular endothelial cells by perfusion of lungs from immunocompetent or nude mice. The cells were grown in culture, and then cloned and characterized. Cloned endothelial cells were incubated with several lymphokines and cytokines. Cells incubated with IFN-$\gamma$ and TNF lysed a variety of tumor cells with different metastatic potential. Mouse skin and lung fibroblasts treated with the same cytokines did not. Endothelial cell mediated tumor cell lysis was not due to different binding ability of tumor cells to cytokine treated and untreated endothelial monolayers. Kinetic studies demonstrated that the continuous presence of cytokines in the tumor-endothelial cocultures was necessary to produce maximal lysis of tumor cells. Target cell lysis was not due to the direct effects of IFN-$\gamma$ or TNF, since vascular endothelial cells isolated from the lung of nude mice lysed human melanoma cells that are sensitive or resistant to TNF. Cytokine treated endothelial cells produced a high level of nitric oxide, which is known to be cytotoxic to a variety of target cells. The level of nitric oxide production was directly correlated with the degree of tumor cell lysis. A specific inhibitor of nitric oxide synthesis(N$\sp{\rm G}$-monomethyl-L-arginine), completely inhibited production of nitric oxide and tumor cell lysis. Treatment of cytokine activated endothelial cells with dexamethasone also inhibited tumor cell lysis. This inhibition was independent of tumor-endothelial adhesion but correlated with inhibition of nitric oxide production. Collectively, these results suggest that vascular endothelial cells can directly destory tumor emboli and thus play an active role in the pathogenesis of cancer metastasis. ^
Resumo:
Mycobacterium tuberculosis infects more people worldwide each year than any other single organism. The Antigen 85 Complex, a family of fibronectin-binding proteins (Fbps) found in several species of mycobacteria and possibly involved in host interaction, is considered among the putative virulence factors of M. tuberculosis. These proteins are implicated in the production of trehalose dimycolate (TDM) and arabinogalactan-mycolate (AG-M), two prominent components of the mycobacterium cell wall and potent modulators of the immune system during infection. For these reasons, the principal members of the complex, FbpA and FbpB, were the focus of these studies. The genes encoding these proteins, fbpA and fbpB, were each disrupted by insertion of a kanamycin resistance cassette in a pathogenic strain of M. tuberculosis, H37Rv. Neither mutation affected growth in routine broth culture. Thin layer chromatography analysis of TDM and AG-M showed no difference in content between the parent strain H37Rv and the FbpA- and FbpB-deficient mutants grown under two different culture conditions. However, metabolic radiolabeling of the strains showed that the production of TDM (but not its precursor TMM) was delayed in the FbpA- and FbpB-deficient mutants compared to the parent H37Rv. During this same labeling period, FbpA-deficient mutant LAa1 failed to produce AG-M and in the FpbB-deficient mutant LAb1 production was decreased. In macrophage tissue culture assay, LAa1 failed to multiply when bacteria in early log phase were used to infect monolayers while LAb1 grew like the parent strain. The growth deficiency of LAa1 as well as the deficiencies in TDM and AG-M production were restored by complementing LAa1 with a functional fbpA gene. These results suggest that the FbpA and FbpB proteins are involved in synthesis of TDM (but not its precursor TMM) as well as AG-M. Other members of the complex appear to compensate for defects in synthesis caused by mutation of single genes in the complex over time. Mutation of the FbpA gene causes greater in vivo effect than mutation of the FbpB gene despite very similar deficiencies in the rate of production of mycolate containing molecules on the cell surface. ^