12 resultados para MATURATION PROMOTING FACTOR

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maturation promoting factor (MPF), which is functionally defined by its ability to induce Xenopus oocyte maturation, is an M phase (meiosis and mitosis) specific activity that is present in all species tested. It was hypothesized that MPF is a universal trigger of the interphase to M phase transition during the cell cycle. The current model for the molecular basis of MPF is that MPF is a protein kinase having the cdc2 protein as its catalytic subunit and is identical to the M phase-specific histone H1 kinase. In the present study, I have shown that more than just cdc2 kinase contributes to MPF activity, and M phase-specific H1 kinase is composed of at least two entities, instead of just cdc2 kinase. Therefore, the simple model of MPF = cdc2 kinase = M phase-specific H1 kinase should be ruled out.^ My study began with the characterization of the mitosis-specific monoclonal antibody MPM-2. MPM-2 reacts specifically with M phase cells from different species by recognizing a discrete set of proteins once they are phosphorylated at the G$\sb2$/M transition. I found that phosphorylation of MPM-2 antigens coincided with the appearance of MPF activity during oocyte maturation stimulated by progesterone. If MPM-2 was injected into oocytes before the stimulation, MPF activity failed to appear, and the oocytes could not mature. Furthermore, MPM-2 was able to deplete MPF activity from M phase extracts. These results identified MPM-2 as a probe that recognizes either MPF itself or a regulator of MPF.^ Since M phase-specific H1 kinase was believed to be identical to cdc2 kinase and MPF, I proceeded to determine whether MPM-2 recognized the M phase-specific H1 kinase. I found that MPM-2 did recognize an M phase-specific H1 kinase. However, this kinase was not cdc2 kinase. This kinase (MPM-2 kinase) is present in a latent form in immature oocytes and is activated in tandem with the activation of MPF during oocyte maturation. It appears to accelerate progesterone-induced oocyte maturation. Therefore, MPM-2 kinase may be a novel positive regulator of MPF activation.^ MPM-2 depletes MPF activity, but not cdc2 kinase activity. This discrepancy caused me to question the equivalency of MPF with cdc2 kinase. I found that when a high percentage of MPF activity was recovered from gel filtration of mature oocyte extract, the recovered MPF activity was due to two factors, cdc2 kinase and a factor recognized by MPM-2. This factor might activate and stabilize cdc2 kinase. Identification of this factor in the present study may contribute to the understanding of the autoactivation of MPF. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The v-mos oncogene acquired by Moloney murine sarcoma viruses by recombination with the c-mos proto-oncogene encodes a 37kD cytoplasmic serine/threonine protein kinase which can phosphorylate tubulin and vimentin, as well as the cyclin B component of the maturation promotion factor complex (MPF). Our earliest experiments asked whether the v-mos protein could activate the transcription of transin. Since the transcription of transin was known to be mediated by both fos-dependent and fos-independent pathways, it seemed possible that the induction of transin transcription by v-mos might be mediated by p55$\sp{\rm c-}\sp{fos}$. Surprisingly, when we examined the effect of v-mos on the fos promoter, we observed a significant inhibition of transcription in 49ON3T cells, a subclone of N1H3T3 mouse fibroblasts.^ In this thesis we show that in mouse 49ON3T cells, transcription from the fos promoter is up to 10-fold repressed in the presence of v-mos. Moreover, in this cell line several other transforming constructs (v-ras, v-src, neu) also cause repression of the fos promoter. Interestingly, nontransforming oncogenes (e.g. myc) do not repress fos transcription. The repressive effect was lost in v-mos mutants lacking in ATP-binding or kinase domain, arguing that the effect on fos transcription was mediated by v-mos transforming kinase activity. As mos is a cytoplasmic protein, it was assumed that transcriptional repression was mediated by conversion of a transcriptional regulator to a repressor by mos-induced phosphorylation. As a first approximation of the identity of this factor, we mapped the position of the mos effect on the fos promoter using reporter (CAT) constructs. We found that repression was mediated by regions $-$221 to $-$106 and $-$122 to $-$65 relative to the fos transcriptional start site, both of which regions regulate baseline fos transcription. There are direct repeats containing E2F transcriptional activator/repressor recognition motifs in these regions which bind similar nuclear proteins independently of v-mos presence or absence. Our data show that the contribution of the direct repeat to baseline fos transcription is mediated by these E2F sites with perhaps some contribution from the overlapping retinoblastoma control element (RCE). We have shown that there is a separate DNA protein interaction in the direct repeat which is more pronounced in the presence of v-mos. The recognition site for this protein, which we speculate mediates the mos-induced downregulation of fos transcription, overlaps but is distinct from the E2F and RCE binding sites. (Abstract shortened by UMI.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein 2 (IGFBP2) is a protein known to be overexpressed in a majority of glioblastoma multiforme (GBM) tumors. While it is known the IGFBP2 is involved in promoting GBM tumor cell invasion, no mechanism exists for how the protein is involved in signal transduction pathways leading to enhanced cell invasion. ^ We follow up on preliminary microarray data on IGFBP2-overexpressing GBM cells and protein sequence analysis of IGFBP2 in generating the hypothesis that IGFBP2 interacts with integnn α5 in regulating cell mobility. Microarray data showing upregulation of integrin α5 by IGFBP2 is validated and evidence of protein-protein interaction between IGFBP2 and integrin α5 is found. The exact binding domain on IGFBP2 responsible for its interaction with integrin α5 is also determined, confirming our initial findings and reaffirming that the IGFBP2/integrin α5 interaction is specific. Disruption of this interaction resulted in attenuation of IGFBP2-enhanced cell mobility. Further, we found that cell mobility is only enhanced when IGFBP2 and integrin α5 are both overexpressed and able to interact with each other. ^ We also determined fibronectin to be a critical player in the activation of the IGFBP2/integrin α5 pathway. The activation of this pathway appears to be progressive and initiates once GBM cells have sufficiently established anchorage. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The studies completed herein explore different phenotypes related to the genetic defects that predispose individuals to a disruption of normal hemostasis. In the first study, a novel autosomal dominant bleeding disorder, which is characterized by excessive bleeding with trauma or surgery and menorrhagia in affected women, was studied in a large family (16 affected individuals) from east Texas. Affected members had a prolongation of their PT and/or aPTT, but normal clinical coagulation studies. Previous linkage analysis by Kuang et. al. (2001) mapped the defective gene to 1g23-24 (LODmax 7.22), which contains the gene for coagulation factor V (FV). I identified an alteration (A2440G) in the FV gene in exon 13 that segregated with the disease and was not present in 62 controls. Interestingly, this alteration resulted in a 22-fold up-regulation of a novel alternative splicing variant in patients' RNA versus controls. This translated into a similar fold increase in a 250-kDa isoform of FV seen in patients' plasma versus controls. A recombinant of this splicing event exhibited an increased sensitivity to cleavage by activated protein C (APC) that was more striking in the presence of PS. In addition, this novel isoform had increased APC cofactor activity, thus increasing the degradation of FVIIIa. These data indicated that A2440G up-regulates an alternatively spliced transcript of FV, and increases a FV isoform that hinders coagulation as opposed to promoting it like its wild-type counterpart. ^ The second study reports the largest screening to date of African Americans in two independent cohorts for a rare prothrombin variant, C20209T, which is suspected to be associated with thrombotic disease. The Texas Medical Center Genetics Resource (TexGen) Stroke DNA repository revealed 1.67% (Fisher p=0.27) of African American stroke patients were heterozygous for the 20209*T allele. Screening of the Atherosclerosis Risk in Communities Study (ARIC) cohort (n=3470) for the 20209*T allele revealed a population prevalence of 0.58% in individuals of African American descent; however, all associations with thrombotic disease were negative. Analysis of these two independent cohorts revealed that, unlike its neighbor G20210A, the C20209T variant does not increase the risk of thrombotic events in the African American population. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p63, a p53 family member, is a transcription factor that has complex roles in cancer. This study focuses on the role of the ∆Np63α isoform in bladder cancer (BC). Epithelial – mesenchymal transition (EMT) is a physiological process that plays an important part in metastasis and drug resistance. At the molecular level, EMT is characterized by the loss of the epithelial marker E-cadherin, and the acquisition of the transcriptional repressors of E-cadherin (ZEB1, ZEB2, TWIST, SNAI1 and SNAI2). Recent publications highlight the role of microRNAs belonging to the miR-200 family and miR-205 in preventing EMT through suppression of ZEB1 and ZEB2. p53, the homologue of p63, is implicated in regulating EMT by modulating the expression of miR-200c; however, the mechanisms underlying miR-205 control remain unclear. Here we show that ∆Np63α regulates the transcription of miR-205 and controls EMT in human BC cells. We observed a strong correlation between the expression of ∆Np63α, miR-205 and E-cadherin in a panel of BC cell lines (n=28) and also in bladder primary tumors from a cohort of patients (n=98). A remarkably inverse correlation is observed between ∆Np63α and ZEB1/2 in cell lines. Stable knockdown (KD) ∆Np63α in UC6, an “epithelial” BC cell line, decreased the expression of miR-205 and induced ZEB1/2 expression, the effects that were reversed by expression of exogenous miR-205. Moreover, overexpressing ∆Np63α in UC3, a “messenchymal” BC cell line, brought about opposite results, an increase in miR-205 expression and a reduction in ZEB1/2 expression. Modulation of ∆Np63α expression resulted in a parallel change in the expression of miR-205 and miR-205 “host” gene (miR-205HG). Nuclear run-on and chromatin immunoprecipitation experiments demonstrated that ∆Np63α regulates the transcription of miR-205 through controlling the recruitment of RNA Polymerase II to the promoter of miR-205HG. Interestingly, high miR-205 expression correlated with poor clinical outcome in BC patients, consistent with our recent publication highlighting the enrichment of ∆Np63 in a lethal subset of muscle invasive BC. In summary, our data present the important roles of ∆Np63α in preventing EMT mediated by miR-205. Our study also identifies miR-205 as a potential molecular marker to predict clinical outcome in BC patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBL) cultured for varying lengths of time in IL-2 are able to mediate antibody independent cellular cytotoxicity (AICC) as well as antibody dependent cellular cytotoxicity (ADCC) against a wide range of tumor targets. The objective of our study is to determine the cytotoxic potential of the subset of LAK cells involved in ADCC, the tumor recognition mechanism in ADCC, the kinetics of ADCC mediated by PBL cultured under various conditions and the role of TNF-$\alpha$ in the development and maturation of ADCC effectors in the LAK population.^ The model system in this study for ADCC used a monoclonal antibody 14G2a (IgG2a), that recognizes the GD2 epitope on human melanoma cell line, SK-Mel-1. The target recognition mechanism operative in AICC (traditionally known as lymphokine activated killing or LAK) is an acquired property of these IL-2 activated cells which confers on them the unique ability to distinguish between tumor and normal cells. This recognition probably involves the presence of a trypsin sensitive N-linked glycoprotein epitope on tumor cells. Proteolytic treatment of the tumor cells with trypsin renders them resistant to AICC by PBL cultured in IL-2. However, ADCC is unaffected. This ADCC, mediated by the relatively small population of cells that are positive for the Fc receptor for IgG (FcR), is an indication that this subset of "LAK" cells does not require the trypsin sensitive epitope on tumor cells to mediate killing. Enriching PBL for FcR+ cells markedly enhanced both AICC and ADCC and also reduced the IL-2 requirement of these cells.^ The stoichiometry of Fc receptor (FcR) expression on the cytotoxic effectors does not correlate with ADCC lytic activity. Although FcRs are necessary to mediate ADCC, other factors, appear to regulate the magnitude of cytolytic activity. In order to investigate these putative factors, the kinetics of ADCC development was studied under various conditions (in IL-2 (10u/ml) and 100u/ml), in IL-2(10u/ml) + TNF$\alpha$ (500u/ml) and in TNF-$\alpha$ (500u/ml) alone). Addition of exogenous TNF-$\alpha$ into the four hour cytotoxicity assay did not increase ADCC, nor did anti-TNF antibodies result in inhibition. On the other hand, addition of anti-TNF antibodies to PBL and IL-2 for 24 hours, resulted in a marked inhibition of the ADCC, suggesting that endogenous TNF-$\alpha$ is obligatory for the maturation and differentiation of ADCC effectors. ^