26 resultados para Low radiation doses
em DigitalCommons@The Texas Medical Center
Resumo:
The Radiological Physics Center (RPC) provides heterogeneous phantoms that are used to evaluate radiation treatment procedures as part of a comprehensive quality assurance program for institutions participating in clinical trials. It was hypothesized that the existing RPC heterogeneous thorax phantom can be modified to assess lung tumor proton beam therapy procedures involving patient simulation, treatment planning, and treatment delivery, and could confirm agreement between the measured dose and calculated dose within 5%/3mm with a reproducibility of 5%. The Hounsfield Units (HU) for lung equivalent materials (balsa wood and cork) was measured using a CT scanner. The relative linear stopping power (RLSP) of these materials was measured. The linear energy transfer (LET) of Gafchromic EBT2 film was analyzed utilizing parallel and perpendicular orientations in a water tank and compared to ion chamber readings. Both parallel and perpendicular orientations displayed a quenching effect underperforming the ion chamber, with the parallel orientation showing an average 31 % difference and the perpendicular showing an average of 15% difference. Two treatment plans were created that delivered the prescribed dose to the target volume, while achieving low entrance doses. Both treatment plans were designed using smeared compensators and expanded apertures, as would be utilized for a patient in the clinic. Plan 1a contained two beams that were set to orthogonal angles and a zero degree couch kick. Plan 1b utilized two beams set to 10 and 80 degrees with a 15 degree couch kick. EBT2 film and TLD were inserted and the phantom was irradiated 3 times for each plan. Both plans passed the criteria for the TLD measurements where the TLD values were within 7% of the dose calculated by Eclipse. Utilizing the 5%/3mm criteria, the 3 trial average of overall pass rate was 71% for Plan 1a. The 3 trial average for the overall pass rate was 76% for Plan 1b. The trials were then analyzed using RPC conventional lung treatment guidelines set forth by the RTOG: 5%/5mm, and an overall pass rate of 85%. Utilizing these criteria, only Plan 1b passed for all 3 trials, with an average overall pass rate of 89%.
Resumo:
In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 ($\sp{166}$Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of $\sp{166}$Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of $\sp{166}$Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of $\sp{166}$Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head.^ A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six $\sp{166}$Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with radiation dose estimates for the bone marrow calculated from the standard and regional technique. The results showed the regional technique values correlated more closely to several clinical response parameters. (Abstract shortened by UMI.) ^
Resumo:
HIV can enter the body through Langerhans cells, dendritic cells, and macrophages in skin mucosa, and spreads by lysis or by syncytia. Since UVL induces of HIV-LTR in transgenic mice mid in cell lines in vitro, we hypothesized that UVB may affect HIV in people and may affect HIV in T cells in relation to dose, apoptosis, and cytokine expression. To determine whether HIV is induced by UVL in humans, a clinical study of HIV+ patients with psoriasis or pruritus was conducted during six weeks of UVB phototherapy, Controls were HIV-psoriasis patients receiving UVB and HIV+ KS subjects without UVB.Blood and skin biopsy specimens were collected at baseline, weeks 2 and 6, and 4 weeks after UVL. AIDS-related skin diseases showed unique cytokine profiles in skin and serum at baseline. In patients and controls on phototherapy, we observed the following: (1) CD4+ and CD8+ T cell numbers are not significantly altered during phototherapy, (2) p24 antigen levels, and also HIV plasma levels increase in patients not on antiviral therapy, (3) HIV-RNA levels in serum or plasma. (viral load) can either increase or decrease depending on the patient's initial viral load, presence of antivirals, and skin type, (4) HIV-RNA levels in the periphery are inversely correlated to serum IL-10 and (5) HIV+ cell in skin increase after UVL at 2 weeks by RT-PCR in situ hybridization mid we negatively correlated with peripheral load. To understand the mechanisms of UVB mediated HIV transcription, we treated Jurkat T cell lines stably transfected with an HIV-LTR-luciferase plasmid only or additionally with tat-SV-40 early promoter with UVB (2 J/m2 to 200 J/m2), 50 to 200 ng/ml rhIL-10, and 10 μg/ml PHA as control. HIV promoter activity was measured by luciferase normalized to protein. Time points up to 72 hours were analyzed for HIV-LTR activation. HIV-LTR activation had the following properties: (1) requires the presence of Tat, (2) occurs at 24 hours, and (3) is UVB dose dependent. Changes in viability by MTS (3-(4,5-dimethyhhiazol-2-y1)-5-(3-carboxymethoxyphonyl)-2-(4-sulfophenyl)-2H-tetrazolium) mixed with PMS (phenazine methosulfate) solution and apoptosis by propidium iodide and annexin V using flow cytometry (FC) were seen in irradiated Jurkat cells. We determined that (1) rhIL-10 moderately decreased HIV-LTR activation if given before radiation and greatly decreases it when given after UVB, (2) HIV-LTR activation was low at doses of greater than 70 J/m2, compared to activation at 50 J/m2. (Abstract shortened by UMI.)^
Resumo:
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^
Resumo:
PURPOSE. In Old World primates, the retina receives input from histaminergic neurons in the posterior hypothalamus. They are a subset of the neurons that project throughout the central nervous system and fire maximally during the day. The contribution of these neurons to vision, was examined by applying histamine to a dark-adapted, superfused baboon eye cup preparation while making extracellular recordings from peripheral retinal ganglion cells. METHODS. The stimuli were 5-ms, 560-nm, weak, full-field flashes in the low scotopic range. Ganglion cells with sustained and transient ON responses and two cell types with OFF responses were distinguished; their responses were recorded with a 16-channel microelectrode array. RESULTS. Low micromolar doses of histamine decreased the rate of maintained firing and the light sensitivity of ON ganglion cells. Both sustained and transient ON cells responded similarly to histamine. There were no statistically significant effects of histamine in a more limited study of OFF ganglion cells. The response latencies of ON cells were approximately 5 ms slower, on average, when histamine was present. Histamine also reduced the signal-to-noise ratio of ON cells, particularly in those cells with a histamine-induced increase in maintained activity. CONCLUSIONS. A major action of histamine released from retinopetal axons under dark-adapted conditions, when rod signals dominate the response, is to reduce the sensitivity of ON ganglion cells to light flashes. These findings may relate to reports that humans are less sensitive to light stimuli in the scotopic range during the day, when histamine release in the retina is expected to be at its maximum.
Resumo:
Radiotherapy has been a method of choice in cancer treatment for a number of years. Mathematical modeling is an important tool in studying the survival behavior of any cell as well as its radiosensitivity. One particular cell under investigation is the normal T-cell, the radiosensitivity of which may be indicative to the patient's tolerance to radiation doses.^ The model derived is a compound branching process with a random initial population of T-cells that is assumed to have compound distribution. T-cells in any generation are assumed to double or die at random lengths of time. This population is assumed to undergo a random number of generations within a period of time. The model is then used to obtain an estimate for the survival probability of T-cells for the data under investigation. This estimate is derived iteratively by applying the likelihood principle. Further assessment of the validity of the model is performed by simulating a number of subjects under this model.^ This study shows that there is a great deal of variation in T-cells survival from one individual to another. These variations can be observed under normal conditions as well as under radiotherapy. The findings are in agreement with a recent study and show that genetic diversity plays a role in determining the survival of T-cells. ^
Resumo:
Treatment for cancer often involves combination therapies used both in medical practice and clinical trials. Korn and Simon listed three reasons for the utility of combinations: 1) biochemical synergism, 2) differential susceptibility of tumor cells to different agents, and 3) higher achievable dose intensity by exploiting non-overlapping toxicities to the host. Even if the toxicity profile of each agent of a given combination is known, the toxicity profile of the agents used in combination must be established. Thus, caution is required when designing and evaluating trials with combination therapies. Traditional clinical design is based on the consideration of a single drug. However, a trial of drugs in combination requires a dose-selection procedure that is vastly different than that needed for a single-drug trial. When two drugs are combined in a phase I trial, an important trial objective is to determine the maximum tolerated dose (MTD). The MTD is defined as the dose level below the dose at which two of six patients experience drug-related dose-limiting toxicity (DLT). In phase I trials that combine two agents, more than one MTD generally exists, although all are rarely determined. For example, there may be an MTD that includes high doses of drug A with lower doses of drug B, another one for high doses of drug B with lower doses of drug A, and yet another for intermediate doses of both drugs administered together. With classic phase I trial designs, only one MTD is identified. Our new trial design allows identification of more than one MTD efficiently, within the context of a single protocol. The two drugs combined in our phase I trial are temsirolimus and bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) pathway which is fundamental for tumor growth and metastasis. One mechanism of tumor resistance to antiangiogenic therapy is upregulation of hypoxia inducible factor 1α (HIF-1α) which mediates responses to hypoxic conditions. Temsirolimus has resulted in reduced levels of HIF-1α making this an ideal combination therapy. Dr. Donald Berry developed a trial design schema for evaluating low, intermediate and high dose levels of two drugs given in combination as illustrated in a recently published paper in Biometrics entitled “A Parallel Phase I/II Clinical Trial Design for Combination Therapies.” His trial design utilized cytotoxic chemotherapy. We adapted this design schema by incorporating greater numbers of dose levels for each drug. Additional dose levels are being examined because it has been the experience of phase I trials that targeted agents, when given in combination, are often effective at dosing levels lower than the FDA-approved dose of said drugs. A total of thirteen dose levels including representative high, intermediate and low dose levels of temsirolimus with representative high, intermediate, and low dose levels of bevacizumab will be evaluated. We hypothesize that our new trial design will facilitate identification of more than one MTD, if they exist, efficiently and within the context of a single protocol. Doses gleaned from this approach could potentially allow for a more personalized approach in dose selection from among the MTDs obtained that can be based upon a patient’s specific co-morbid conditions or anticipated toxicities.
Resumo:
Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.
Resumo:
Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^
Resumo:
The proportional distribution of independent malignant tumors in the contralateral breast following treatment for breast cancer was investigated to assess the influence of scattered radiation as a cause of these tumors. In a population of 172 patients the proportion of contralateral tumors in each quadrant and the center (the nipple-areolar complex) was compared with the expected, or natural, distribution found in the general population, in the absence of radiation. The observed/expected ratio for contralateral tumors was 1.43 for the upper-inner quadrant; 0.97, lower-inner quadrant; 1.51, center; 0.76, upper-outer quadrant; and 0.64, lower-outer quadrant. In each quadrant, except the lower-inner, the observed/expected ratio differed from 1.00 with statistical significance at the 5% level (one-tail). The same analysis, stratified by age and menopausal status, showed a similar shift of tumors, with more than expected in the inner quadrants and center and less than expected in the outer quadrants, although the results did not show statistical significance at the 5% level for all strata. For each patient the mean absorbed radiation dose for each quadrant and center of the breast was estimated, based on measurements in a tissue-equivalent phantom. Among patients the doses ranged from 0.5 to 8 Gy; within individuals, doses to the inner quadrants typically were a factor of three times higher than doses to the outer quadrants. The results suggest that radiation may be a risk factor for contralateral breast tumors and warrants further investigation. ^
Resumo:
The object of this work was to study the possibility that microtubule assembly might be involved in radiation sensitivity effect. The proliferating hair follicle was used to study the effects of cooling c-AMP, colcemid, and vincristine on the survival of the hair after irradiation. It was found that after 2 hours of cooling at the rewarming stage of the hair follicles, the sensitivity to irradiation increased and colcemid reversed this effect. c-AMP decreased radiosensitivity and together with colcemid, sensitivity decreased considerably. It is proposed that the assembly of microtubules is sensitive to irradiation.^ Total tubulin in L-P59 tumor measured immediately after irradiation was found to decrease in a dose specific manner after single doses ranging from 500 to 2000 rad. It is proposed that the change in Ca('2+) concentration after irradiation might cause this effect. Irradiation inhibited the increase in specific viscosity of 3x and 1x tubulin irradiated at the time of assembly. A small reduction in specific viscosity was found when polymerized microtubules were irradiated.^ From these experiments it is proposed that the assembly of microtubules is affected by irradiation. It may be the result of an increase in CA('2+) concentration in the tissue after irradiation or an inactivation of the initiation centers. The effects of irradiation on unassembled tubulin or assembled microtubules is negligible. ^
Resumo:
The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^
Resumo:
Excessive exposure to the UV radiation present in sunlight can lead to the development of skin cancer in humans. Majority of the UV-induced skin tumors in immune-competent mice are highly antigenic in nature. Additionally, they exhibit a high frequency of mutations in the p53 gene, which arise very early in the course of UV radiation and most of them disappear before the development of skin tumors. ^ Initially, this study was to determine whether UV radiation induces skin tumors much earlier in immune deficient Rag2 knockout mice than in immune-competent mice, and if so, compare their antigenic properties and p53 mutation spectra. However, chronic UV irradiation (10 kJ/m2) induced myeloproliferative disease (MPD) as early as 4 weeks in Rag2 knockout mice instead of skin tumors. Conversely, unirradiated Rag2 knockout mice developed MPD at a low frequency, but the frequency increased with the animal's age. Although the UV-irradiated wild type mice (B6129) developed MPD, its frequency was lower and the occurrence much later than the Rag2 knockout mice. ^ This observation led to our new hypothesis that UV irradiation plays a role in the development of MPD in Rag2 knockout mice. After 4 weeks of UV radiation, both histopathology (myeloid:erythroid ratio, number of blast cells) and flow cytometry (mature myeloid, granulocytes and immature cells) demonstrated an increased number of mice affected with the disease in the UV-irradiated Rag2 knockout group than the other groups. ^ We also investigated the role of cytokines and absence of T and B cells in the development of MPD in the Rag2 knockout mice. Results indicated that IL-3 and IL-3Rα chain expression was upregulated in the spleens of the UV-irradiated Rag2 knockout mice (4 weeks). Reconstitution of the Rag2 knockout mice with T and B cells abrogated the UV-accelerated development of MPD. Both histopathology and flow cytometric analysis (mature myeloid cells, granulocytes) showed a decrease in the number of mice affected with the disease in the UV-irradiated, reconstituted group rather than any other group. In summary, this study provides the first experimental evidence that exposure to UV irradiation can lead to the development of MPD in immune deficient mice. ^
Resumo:
The purpose of this work was to develop a comprehensive IMSRT QA procedure that examined, using EPID dosimetry and Monte Carlo (MC) calculations, each step in the treatment planning and delivery process. These steps included verification of the field shaping, treatment planning system (RTPS) dose calculations, and patient dose delivery. Verification of each step in the treatment process is assumed to result in correct dose delivery to the patient. ^ The accelerator MC model was verified against commissioning data for field sizes from 0.8 × 0.8 cm 2 to 10 × 10 cm 2. Depth doses were within 2% local percent difference (LPD) in low gradient regions and 1 mm distance to agreement (DTA) in high gradient regions. Lateral profiles were within 2% LPD in low gradient regions and 1 mm DTA in high gradient regions. Calculated output factors were within 1% of measurement for field sizes ≥1 × 1 cm2. ^ The measured and calculated pretreatment EPID dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Pretreatment field verification resulted in 97% percent of the points passing. ^ The RTPS and Monte Carlo phantom dose calculations were compared using 5% LPD, 2 mm DTA, or 2% of the maximum dose with ≥95% of compared points required passing for successful verification. RTPS calculation verification resulted in 97% percent of the points passing. ^ The measured and calculated EPID exit dose patterns were compared using criteria of 5% LPD, 1 mm DTA, or 2% of central axis pixel value with ≥95% of compared points required to pass for successful verification. Exit dose verification resulted in 97% percent of the points passing. ^ Each of the processes above verified an individual step in the treatment planning and delivery process. The combination of these verification steps ensures accurate treatment delivery to the patient. This work shows that Monte Carlo calculations and EPID dosimetry can be used to quantitatively verify IMSRT treatments resulting in improved patient care and, potentially, improved clinical outcome. ^