5 resultados para Low density lipoproteins

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclosporine A (CSA) is a cyclic eleven amino acid, lipophilic molecule used therapeutically as an immunosuppressive agent. Cyclosporine can specifically inhibit the transcription of a number of different genes. It is known that CSA is bound almost exclusively to lipoproteins in plasma, however, the relationship between the low density lipoprotein (LDL), the LDL receptor, and CSA has not been fully elucidated. The exact mechanism of cellular uptake of CSA is unknown, but it is believed to be by simple passive diffusion across the cell membrane. In addition, it has been recently shown that the frequent finding of hypercholesterolemia seen in patients treated with CSA can be explained by a CSA-induced effect. The mechanism by which CSA induces hypercholesterolemia is not known. We have used an LDL receptor-deficient animal model, the Watanabe Heritable Hyperlipidemic (WHHL) rabbit to investigate the role of LDL and the LDL receptor in the cellular uptake of CSA. Using this animal model, we have shown that CSA uptake by lymphocytes is predominantly LDL receptor-mediated. Chemical modification of apoB-100 on LDL particles abolishes their ability to bind to the LDL receptor. When CSA is incubated with modified LDL much less is taken-up than when native LDL is incubated with CSA. Treatment of two human cell lines with CSA results in a dose-dependent decrease in LDL receptor mRNA levels. Using a novel transfection system involving the 5$\sp\prime$-flanking region of the LDL receptor gene, we have found that CSA decreases the number of transcripts, but is dependent on whether or not cholesterol is present and the stage of growth of the cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein E (ApoE) plays a major role in the metabolism of high density and low density lipoproteins (HDL and LDL). Its common protein isoforms (E2, E3, E4) are risk factors for coronary artery disease (CAD) and explain between 16 to 23% of the inter-individual variation in plasma apoE levels. Linkage analysis has been completed for plasma apoE levels in the GENOA study (Genetic Epidemiology Network of Atherosclerosis). After stratification of the population by lipoprotein levels and body mass index (BMI) to create more homogeneity with regard to biological context for apoE levels, Hispanic families showed significant linkage on chromosome 17q for two strata (LOD=2.93 at 104 cM for a low cholesterol group, LOD=3.04 at 111 cM for a low cholesterol, high HDLC group). Replication of 17q linkage was observed for apoB and apoE levels in the unstratified Hispanic and African-American populations, and for apoE levels in African-American families. Replication of this 17q linkage in different populations and strata provides strong support for the presence of gene(s) in this region with significant roles in the determination of inter-individual variation in plasma apoE levels. Through a positional and functional candidate gene approach, ten genes were identified in the 17q linked region, and 62 polymorphisms in these genes were genotyped in the GENOA families. Association analysis was performed with FBAT, GEE, and variance-component based tests followed by conditional linkage analysis. Association studies with partial coverage of TagSNPs in the gene coding for apolipoprotein H (APOH) were performed, and significant results were found for 2 SNPs (APOH_20951 and APOH_05407) in the Hispanic low cholesterol strata accounting for 3.49% of the inter-individual variation in plasma apoE levels. Among the other candidate genes, we identified a haplotype block in the ACE1 gene that contains two major haplotypes associated with apoE levels as well as total cholesterol, apoB and LDLC levels in the unstratified Hispanic population. Identifying genes responsible for the remaining 60% of inter-individual variation in plasma apoE level, will yield new insights into the understanding of genetic interactions involved in the lipid metabolism, and a more precise understanding of the risk factors leading to CAD. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have shown that liposomal amphotericin B (L-AmpB) decreased renal toxicity and maintains the antifungal activity of amphotericin B (AmpB). We have also observed that L-AmpB is predominantly associated with high density lipoproteins (HDL) as compared to Fungizone (AmpB + deoxycholate). The present experiments were designed to assess the biological relevance of transferring AmpB to HDL. We observed that AmpB was less toxic to kidney cells when associated with HDL, however AmpB toxicity was maintained when associated with LDL. To further understand how HDL-associated AmpB reduces renal cell toxicity the presence of HDL and LDL receptors in this cell line was determined. We observed that these cells expressed high and low affinity LDL receptors, but only low affinity HDL receptors. The reduced renal cell toxicity of HDL-associated AmpB may be due to its lack of interaction with renal cells because of the absence of HDL receptors. Since AmpB interacts with cholesteryl esters whose transfer among lipoproteins is regulated by Lipid transfer Protein (LTP), the role of LTP on the distribution of AmpB to HDL and LDL was next examined. We found that negatively charged liposomes significantly reduced LTP-mediated transfer of CE between HDL and LDL, independent of the presence of AmpB, while Fungizone only significantly inhibited CE transfer at one concentration tested (20$\mu$g/ml). Therefore, we believe that the decreased renal toxicity of L-AmpB is related to its predominant distribution to HDL which is regulated by the inhibition of LTP activity. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Growing cells are continuously processing signals of all varieties and responding to these signals by changes in cellular gene expression. One signal that cells in close proximity relay to each other is cell-cell contact. Non-transformed cells respond to cell-cell contact by arrest of growth and entry into G$\sb0,$ a process known as contact inhibition. Transformed cells do not respond to contact inhibition and continue to grow to high cell density, forming foci when in cell culture and tumors in the living organism. The events surrounding the generation, transduction, and response to cellular contact are poorly understood. In the present study, a novel gene product, drp, is shown to be expressed at high levels in cultured cells at high cell density. This density regulated protein, drp, has an apparent molecular weight of 70 kDa. Northern analysis shows drp to be highly expressed in cardiac and skeletal muscle and least abundant in lung and kidney tissues. By homology to two independently derived sequence tagged sites (STSs) used in the human genome project, drp or a closely related sequence maps to human chromosome 12. Density-dependent increases in drp expression have been demonstrated in six different cell lines including NIH 3T3, Hela and a human teratocarcinoma cell line, PA-1. Cells exhibit increased drp expression both when they are plated at increasing concentrations per unit area, or plated at low density and allowed to grow naturally to higher cell density. Cells at high density can exhibit several phenotypes including growth arrest, accumulation of soluble factors in the media, and increased numbers of cell contacts. Growth arrest by serum starvation or TGF-$\beta$ treatment fails to produce an increase in drp expression. Similarly, treatment of low density cells with conditioned media from high density cells fails to elicit drp expression. These results argue that neither soluble factors accumulated or expressed at high density nor simple exit from the cell cycle is sufficient to produce an increase in drp expression. The expression of drp appears to be uniquely regulated by cell density alone. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma low-density lipoprotein (LDL) levels are positively correlated with the incidence of coronary artery disease. In the circulation, the plasma LDL clearance is mainly achieved by the uptake via LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a newly discovered gene, playing an important role in LDL metabolism. Gain-of-function mutations of PCSK9 lead to hypercholesterolemia and loss-of-function mutations of PCSK9 are associated with decrease of LDL cholesterol. The effects of PCSK9 on cholesterol levels are the consequence of a strong interaction between the catalytic domain of PCSK9 and epidermal growth factor-like repeat A (EGF-A) domain of LDLR on the cell surface of hepatocytes. This PCSK9/LDLR complex enters the cell via endocytosis, where both PCSK9 and LDLR are removed via the lysosome pathway, resulting in decreased levels of LDLR and accumulation of LDL in the plasma. However, whether this is the exclusive function of PCSK9 on LDL metabolism was challenged by us; we observed PCSK9 interacted with apolipoprotein B (apoB) and increased apoB production, irrespective of the LDLR. ApoB is the primary structure protein of LDL particle and it also serves as the ligand for the LDL receptor. There is ample evidence showing that the levels of apoB are a better indicator for heart disease than either total cholesterol or LDL cholesterol levels. We used a second-generation adenoviral vector to overexpress PCSK9 (Ad-PCSK9) in wild-type C57BL/6 and LDLR deficient mice (Ldlr-/- and Ldlr-/-Apobec1-/-). Our study revealed that overexpression of PCSK9 promoted the production and secretion of apoB in the form of very-low density lipoprotein (VLDL), which is the precursor of LDL, in the 3 mouse models studied (C57BL/6J, Ldlr-/-, and Ldlr-/-Apobec1-/-). The increased apoB production in mice was regulated at post-transcriptional levels, since there was no difference in apoB mRNA levels between mice treated with Ad-PCSK9 and control vector Ad-Null. By using pulse-chase experiment on primary hepatocytes, we showed that overexpression of PCSK9 increased the secretion of apoB, independent of LDLR. In the circulation, we showed that PCSK9 was associated with LDL particles. By using 3 different protein–protein interaction assays of co-immunoprecipitation, mammalian two-hybrid system, and in situ proximity ligation assay, we demonstrated a direct protein–protein interaction between PCSK9 and apoB. The impact of this interaction inhibited the physiological removal process of apoB via autophagosome/lysosome pathway in an LDLR-independent fashion, resulting in increased production and secretion of apoB-containing lipoproteins. The significance of this process was shown in the Pcsk9 knockout mice in the background of Ldlr-/-Apobec1-/- mice (triple knockout mice); in the absence of Pcsk9 (triple knockout mice) the levels of cholesterol, triacylglycerol, and apoB decreased significantly in comparison to that of Ldlr-/-Apobec1-/- mice. Taken together, our study demonstrated a direct intracellular interaction of PCSK9 with apoB, resulting in the inhibition of apoB degradation via the autophagosome/lysosome pathway independent of LDLR. This discovery provides a new concept of the importance of PCSK9 and suggests new approaches for the therapeutic intervention of hyperlipidemia.