6 resultados para Longitudinal design
em DigitalCommons@The Texas Medical Center
Resumo:
Mixed longitudinal designs are important study designs for many areas of medical research. Mixed longitudinal studies have several advantages over cross-sectional or pure longitudinal studies, including shorter study completion time and ability to separate time and age effects, thus are an attractive choice. Statistical methodology used in general longitudinal studies has been rapidly developing within the last few decades. Common approaches for statistical modeling in studies with mixed longitudinal designs have been the linear mixed-effects model incorporating an age or time effect. The general linear mixed-effects model is considered an appropriate choice to analyze repeated measurements data in longitudinal studies. However, common use of linear mixed-effects model on mixed longitudinal studies often incorporates age as the only random-effect but fails to take into consideration the cohort effect in conducting statistical inferences on age-related trajectories of outcome measurements. We believe special attention should be paid to cohort effects when analyzing data in mixed longitudinal designs with multiple overlapping cohorts. Thus, this has become an important statistical issue to address. ^ This research aims to address statistical issues related to mixed longitudinal studies. The proposed study examined the existing statistical analysis methods for the mixed longitudinal designs and developed an alternative analytic method to incorporate effects from multiple overlapping cohorts as well as from different aged subjects. The proposed study used simulation to evaluate the performance of the proposed analytic method by comparing it with the commonly-used model. Finally, the study applied the proposed analytic method to the data collected by an existing study Project HeartBeat!, which had been evaluated using traditional analytic techniques. Project HeartBeat! is a longitudinal study of cardiovascular disease (CVD) risk factors in childhood and adolescence using a mixed longitudinal design. The proposed model was used to evaluate four blood lipids adjusting for age, gender, race/ethnicity, and endocrine hormones. The result of this dissertation suggest the proposed analytic model could be a more flexible and reliable choice than the traditional model in terms of fitting data to provide more accurate estimates in mixed longitudinal studies. Conceptually, the proposed model described in this study has useful features, including consideration of effects from multiple overlapping cohorts, and is an attractive approach for analyzing data in mixed longitudinal design studies.^
Resumo:
Cross-sectional designs, longitudinal designs in which a single cohort is followed over time, and mixed-longitudinal designs in which several cohorts are followed for a shorter period are compared by their precision, potential for bias due to age, time and cohort effects, and feasibility. Mixed longitudinal studies have two advantages over longitudinal studies: isolation of time and age effects and shorter completion time. Though the advantages of mixed-longitudinal studies are clear, choosing an optimal design is difficult, especially given the number of possible combinations of the number of cohorts and number of overlapping intervals between cohorts. The purpose of this paper is to determine the optimal design for detecting differences in group growth rates.^ The type of mixed-longitudinal study appropriate for modeling both individual and group growth rates is called a "multiple-longitudinal" design. A multiple-longitudinal study typically requires uniform or simultaneous entry of subjects, who are each observed till the end of the study.^ While recommendations for designing pure-longitudinal studies have been made by Schlesselman (1973b), Lefant (1990) and Helms (1991), design recommendations for multiple-longitudinal studies have never been published. It is shown that by using power analyses to determine the minimum number of occasions per cohort and minimum number of overlapping occasions between cohorts, in conjunction with a cost model, an optimal multiple-longitudinal design can be determined. An example of systolic blood pressure values for cohorts of males and cohorts of females, ages 8 to 18 years, is given. ^
Resumo:
Low parental monitoring is related to youth risk behaviors such as delinquency and aggression. The purpose of this dissertation was to describe the development and evaluation of a parent education intervention to increase parental monitoring in Hispanic parents of middle school children.^ The first study described the process of intervention mapping as used to develop Padres Trabajando por la Paz, a newsletter intervention for parents. Using theory, empirical literature, and information from the target population, performance objectives and determinants for monitoring were defined. Learning objectives were specified and a staged social-cognitive approach was used to develop methods and strategies delivered through newsletters.^ The second study examined the outcomes of a randomized trial of the newsletter intervention. Outcome measures consisted of a general measure of monitoring, parent and child reports of monitoring behaviors targeted by the intervention, and psychosocial determinants of monitoring (self-efficacy, norms, outcome expectancies, knowledge, and beliefs). Seventy-seven parents completed the randomized trial, half of which received four newsletters over an eight-week period. Results revealed a significant interaction effect for baseline and treatment for parent's reports of norms for monitoring (p =.009). Parents in the experimental condition who scored low at baseline reported increased norms for monitoring at follow-up. A significant interaction effect for child reports of parental monitoring behaviors (p =.04) reflected an small increase across baseline levels in the experimental condition and decreases for the control condition at higher baseline scores. Both groups of parents reported increased levels of monitoring at follow-up. No other outcome measures varied significantly by condition.^ The third study examined the relationship between the psychosocial determinants of parental monitoring and parental monitoring behaviors in the study population. Weak evidence for a relationship between outcome expectancies and parental monitoring behaviors suggests further research in the area utilizing stronger empirical models such as longitudinal design and structural equation modeling.^ The low-cost, minimal newsletter intervention showed promise for changing norms among Hispanic parents for parental monitoring. In light of the importance of parental monitoring as a protective factor for youth health risk behaviors, more research needs to be done to develop and evaluate interventions to increase parental monitoring. ^
Resumo:
Objective. One facet of cancer care that often goes ignored is comorbidities, or diseases that exist in concert with cancer. Comorbid conditions may affect survival by influencing treatment decisions and prognosis. The purpose of this secondary data analysis was to identify whether a history of cardiovascular comorbidities among ovarian cancer patients influenced survival time at the University of Texas M. D. Anderson Cancer Center. The parent study, Project Peace, has a longitudinal design with an embedded randomized efficacy study which seeks to improve detection of depressive disorders in ovarian, peritoneal, and fallopian tube cancers. ^ Methods. Survival time was calculated for the 249 ovarian cancer patients abstracted by Project Peace staff. Cardiovascular comorbidities were documented as present, based upon information from medical records in addition to self reported comorbidities in a baseline study questionnaire. Kaplan-Meier survival curves were used to compare survival time among patients with a presence or absence of particular cardiovascular comorbidities. Cox Regression proportional models accounted for multivariable factors such as age, staging, family history of cardiovascular comorbidities, and treatment. ^ Results. Among our patient population, there was a statistically significant relationship between shorter survival time and a history of thrombosis, pericardial disease/tamponade, or COPD/pulmonary hypertension. Ovarian cancer patients with a history of thrombosis lived approximately half as long as patients without thrombosis (58.06 months vs. 121.55 months; p=.001). In addition, patients who suffered from pericardial disease/tamponade had poorer survival than those without a history of pericardial disease/tamponade (48 months vs. 80.07 months; p=.002). Ovarian cancer patients with a history of COPD or pulmonary hypertension had a median survival of 60.2 months, while the median survival for patients without these comorbidities was 80.2 months (p=.014). ^ Conclusion. Especially because of its relatively lower survival rate, greater emphasis needs to be placed on the potential influence of cardiovascular comorbid conditions in ovarian cancer.^
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
In prospective studies it is essential that the study sample accurately represents the target population for meaningful inferences to be drawn. Understanding why some individuals do not participate, or fail to continue to participate, in longitudinal studies can provide an empirical basis for the development of effective recruitment and retention strategies to improve response rates. This study examined the influence of social connectedness and self-esteem on long-term retention of participants, using secondary data from the “San Antonio Longitudinal Study of Aging” (SALSA), a population-based study of Mexican Americans (MAs) and European Americans (EAs) aged over 65 years residing in San Antonio, Texas. We tested the effect of social connectedness, self-esteem and socioeconomic status on participant retention in both ethnic groups. In MAs only, we analyzed whether acculturation and assimilation moderated these associations and/or had a direct effect on participant retention. ^ Low income, low frequency of social contacts and length of recruitment interval were significant predictors of non-completer status. Participants with low levels of social contacts were almost twice as likely as those with high levels of social contacts to be non-completers, even after adjustment for age, sex, ethnic group, education, household income, and recruitment interval (OR = 1.95, 95% CI: 1.26–3.01, p = 0.003). Recruitment interval consistently and strongly predicted non-completer status in all the models tested. Depending on the model, for each year beyond baseline there was a 25–33% greater likelihood of non-completion. The only significant interaction, or moderating, effect observed was between social contacts and cultural values among MAs. Specifically, MAs with both low social contacts and low acculturation on cultural values (i.e., placed high value on preserving Mexican cultural origins) were three and half times more likely to be non-completers compared with MAs in other subgroups comprised of the combination of these variables, even after adjustment for covariates. ^ Long term studies with older and minority participants are challenging for participant retention. Strategies can be designed to enhance retention by paying special attention to participants with low social contacts and, in MAs, participants with both low social contacts and low acculturation on cultural values. Minimizing the time interval between baseline and follow-up recruitment, and maintaining frequent contact with participants during this interval should also be is integral to the study design.^