7 resultados para Long run neutrality of money
em DigitalCommons@The Texas Medical Center
Resumo:
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhancement of the siphon-withdrawal reflex, or long-term synaptic facilitation increased Glu uptake. Moreover, 5-hydroxytryptamine, a treatment that induces long-term facilitation, also produced a long-term increase in Glu uptake in cultures of sensory neurons. The mechanism for the increase in uptake is an increase in the V(max) of transport. The long-term increase in Glu uptake appeared to be dependent on mRNA and protein synthesis, and transport through the Golgi, because 5,6-dichlorobenzimidazole riboside, emetine, and brefeldin A inhibited the increase in Glu uptake. Also, injection of emetine and 5,6-dichlorobenzimidazole into Aplysia prevented long-term sensitization. Synthesis of Glu itself may be regulated during long-term sensitization because the same treatments that produced an increase in Glu uptake also produced a parallel increase in Gln uptake. These results suggest that coordinated regulation of a number of different processes may be required to establish or maintain long-term synaptic facilitation.
Resumo:
The feasibility of establishment of continuously proliferating growth factor-dependent human B lymphocytes was investigated. Normal B lymphocytes prepared from peripheral venous blood were stimulated with a variety of known polyclonal B cell activators, in the continuous presence of various cytokine preparations. Continuously proliferating growth factor-dependent B cell populations were obtained from cultures activated with either insoluble anti-IgM ((mu)-chain specific), soluble anti-IgM, heat-killed Staphylococcus aureus Cowen I (SAC), or dextran sulphate (DxS), in the continuous presence of exogenously added growth factor preparations containing either IL-1, IL-2 and BCGF, or BCGF alone. Although growth factor-dependent B cell lines were obtained via all three methods of activation, the correlation of mode of activation and growth factor preparation proved to be critical. B cell lines could not be established with anti-(mu) activation in the presence of only BCGF; however, B cell lines were successfully obtained with SAC or DxS activation from those cultures continuously replenished with only BCGF. These cultured B lymphocyte populations were routinely maintained in logarithmic-phase growth in the presence of exogenously added growth factor, and exhibited a population doubling time of approximately 36 hours. They were shown to specifically absorb BCGF, suggesting the presence of membrane receptors for it. Also, these cultured B cells have been utilized for the development of a microassay for the assessment of a M(,r) 12,000-14,000 B cell growth factor activity that is accurate, sensitive, and precise. The pronounced sensitivity of this bioassay beyond that of the conventional peripheral blood B cell assay has aided in the purification to homogeneity of natural product extracellular BCGF (EC-BCGF), and in the determination of the nucleotide sequence for a gene coding for a protein exhibiting BCGF activity. Additionally, these B cell lines specifically absorb, and proliferate in the presence of, an affinity-purified M(,r) 60,000 trypsin-sensitive intracellular protein derived from freshly isolated human T lymphocytes, providing evidence for a putative intracellular precursor of EC-BCGF, or a novel high molecular weight BCGF species. ^
Resumo:
Neuronal outgrowth has been proposed in many systems as a mechanism underlying memory storage. For example, sensory neuron outgrowth is widely accepted as an underlying mechanism of long-term sensitization of defensive withdrawal reflexes in Aplysia. The hypothesis is that learning leads to outgrowth and consequently to the formation of new synapses, which in turn strengthen the neural circuit underlying the behavior. However, key experiments to test this hypothesis have never been performed. ^ Four days of sensitization training leads to outgrowth of siphon sensory neurons mediating the siphon-gill withdrawal response in Aplysia . We found that a similar training protocol produced robust outgrowth in tail sensory neurons mediating the tail siphon withdrawal reflex. In contrast, 1 day of training, which effectively induces long-term behavioral sensitization and synaptic facilitation, was not associated with neuronal outgrowth. Further examination of the effect of behavioral training protocols on sensory neuron outgrowth indicated that this structural modification is associated only with the most persistent forms of sensitization, and that the induction of these changes is dependent on the spacing of the training trials over multiple days. Therefore, we suggest that neuronal outgrowth is not a universal mechanism underlying long-term sensitization, but is involved only in the most persistent forms of the memory. ^ Sensory neuron outgrowth presumably contributes to long-term sensitization through formation of new synapses with follower motor neurons, but this hypothesis has never been directly tested. The contribution of outgrowth to long-term sensitization was assessed using confocal microscopy to examine sites of contact between physiologically connected pairs of sensory and motor neurons. Following 4 days of training, the strength of both the behavior and sensorimotor synapse and the number of appositions with follower neurons was enhanced only on the trained side of the animal. In contrast, outgrowth was induced on both sides of the animal, indicating that although sensory neuron outgrowth does appear to contribute to sensitization through the formation of new synapses, outgrowth alone is not sufficient to account for the effects of sensitization. This indicates that key regulatory steps are downstream from outgrowth, possibly in the targeting of new processes and activation of new synapses. ^
Resumo:
Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^
Resumo:
This study evaluates the effect of a specially designed, physician-oriented handbook of antimicrobial use on the prescribing patterns of a group of fifty doctors at a university hospital. Data were evaluated over a peroid of one-and-one-half years, before and after the distribution of the handbook. For the purposes of this study, antimicrobial therapy was classified: (1) inappropriate if it violated one of a number of recognized principles of antimicrobial therapy, (2) appropriate if it agreed with specific recommendations or alternatives given in the distributed reference handbook, and (3) acceptable if it was neither inappropriate nor appropriate as defined by the handbook. An initial survey of antimicrobial prescribing patterns was made. Five months later the handbook was distributed and a two-week orientation program, consisting of the distribution and promotion of the problem-oriented, pocket-size handbook of appropriate antimicrobial therapy, was conducted. The handbook, which was developed by the authors and reviewed and approved by a panel of infectious disease specialists, presented guidelines for appropriate and efficacious usage of antimicrobial agents as most currently accepted in common clinical infections. Subsequent surveys were then conducted two weeks, three months, and six months after distribution of the handbook. A statistically significant difference (p < 0.01) in antimicrobial prescribing patterns was noted between the survey conducted two weeks after the introduction of the handbook and the other surveys. In this survey, while therapy classified inappropriate decreased from 44% to 28%, therapy appropriate as recommended increased from 31% to 53%. The findings of this study demonstrate that the introduction and promotion of the handbook decreases abuse and increases proper use of antimicrobial therapy, although the effect is sustainable for only a short duration--no longer than three months. These results indicate the need for a vigorous, updated program to achieve and maintain current appropriate antibotic therapy in clinical medicine. ^
Resumo:
Background: interventions that focus on improving eating habits, increasing physical activity, and reducing sedentary behaviors on weight status and body mass index percentile and z-scores in youths have not been well documented. This study aimed to determine the short and long term effects of a 2-week residential weight management summer camp program for youths on weight, BMI, BMI percentile, and BMI z-score. ^ Methods: A sample of 73 obese multiethnic 10-14 years old youths (11.9 ± 1.4) attended a weight management camp called Kamp K'aana for two weeks and completed a 12-month follow-up on height and weight. As part of Kamp K'aana, participants received a series of nutrition, physical activity and behavioral lessons and were on an 1800 kcal per day meal plan. Anthropometric measurements of height and weight were taken to calculate participants' BMI percentiles and z-scores. Paired t-tests, chi square test and ANCOVA, adjusting for age, gender, and ethnicity were used to assess changes in body weight, BMI, BMI percentiles and BMI z-scores pre to two-weeks post-camp and 12 months post-camp. ^ Results: Significant reductions in body weight of 3.6 ± 1.4 (P = 0.0000), BMI of 1.4 ± 0.54 (P = 0.0000), BMI percentile of 0.45 ± 0.06 (P = 0.0000), and BMI z-score of 0.1 ± 0.06 (P = 0.0000) were observed at the end of the camp. Significant reductions in BMI z-scores (P < 0.001) and BMI percentile (P < 0.001) were observed at the 12-month reunion when compared to pre- and two-weeks post camp data. There was a significant increase in weight and BMI (P = 0.0000) at the 12-month reunion when compared to pre and post camp measurements. ^ Conclusion: Kamp K'aana has consistently shown short-term reductions in weight, BMI, BMI percentile, and BMI z-score. Results from analysis of long-term data suggest that this intervention had beneficial effects on body composition in an ethnically diverse population of obese children. Further research which includes a control group, larger sample size, and cost-analysis should be conducted.^
Resumo:
In various species, peripheral injury produces long-lasting sensitization of central and peripheral neurons representing the affected area. In Aplysia, memory-like traces (lasting days or weeks) of noxious peripheral stimulation include enhancement of central synaptic transmission and enhanced excitability of the central soma and peripheral branches of nociceptive sensory neurons. An important role for the cAMP-PKA-CREB pathway in consolidating long-term memory and inducing transcription-dependent synaptic potentiation has also been indicated by studies in rodents and Drosophila. ^ Much less attention has been paid to the cGMP-PKG pathway for transcription-dependent plasticity. Nevertheless, the cGMP-PKG pathway has been implicated in activity-dependent neural alterations lasting hours, and may trigger some forms of persistent pain. Recent evidence indicates PKG can regulate gene expression in the brain and several properties make it an attractive candidate for inducing long-term memories. ^ This dissertation reports that brief, noxious stimulation of a behaving, semi-intact preparation from mollusc, Aplysia californica, produces transcription-dependent, long-term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and which lasts for at least 24 hours. Intracellular injection of cGMP is sufficient to induce LTH. Similarly, body wall injury induces LTH which can be blocked with specific inhibitors of the NO-cGMP-PKG pathway such as L-NMMA, ODQ, Rp-8-cGMPS, PKI-G and KT5823 by isolated perfusion of pleural ganglion sensory cells in or directly by intracellular injection. In contrast, specific inhibitors of the cAMP-PKA pathway (Rp-8-cAMPS, PKI-A and H-89) failed to block injury-induced LTH. Interestingly, co-injection of the cAMP-responsive element (CRE) blocked the induction of both cAMP and injury-induced LTH, but not cGMP-induced LTH. Furthermore, co-injection of cAMP and cGMP with the Ca2+ buffer BAPTA in reduced Ca2+ seawater blocked cAMP-, but not cGMP-induced LTH. These findings demonstrate that the NO-cGMP-PKG pathway and at least one other pathway (perhaps mediated by Ca2+), but not the cAMP-PKA pathway, are critical for inducing LTH during transient, noxious stimulation.^