9 resultados para Logging, Logging library migration
em DigitalCommons@The Texas Medical Center
Resumo:
Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.
Resumo:
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.
Resumo:
In order to more fully understand the function of surface GalTase on mesenchymal cells, anti-GalTase IgG was used to (a) examine the role of surface GalTase during mouse mesenchymal cell migration on laminin and fibronectin; (b) define the plasma membrane distribution of GalTase by indirect immunofluorescence on migrating cells; (c) quantitate the level of surface GalTase on migrating cells; and (d) determine whether GalTase is associated with the cytoskeleton.^ Results show that anti-GalTase IgG was able to inhibit migration (48-80% as compared to basal rate) when cells were migrating on laminin-containing matrices. Monovalent Fab fragments inhibited migration on laminin by 90% after 4 hours. On the other hand, anti-GalTase IgG had no effect on cells migrating on fibronectin. This illustrates the substrate specificity of GalTase mediated-migration. When anti-GalTase IgG was used to localize surface GalTase on cells migratory on laminin, the enzyme was restricted to the leading and trailing edges of the cell. Assays indicate that GalTase is elevated approximately 3-fold when cells are migrating on laminin-containing matrices as compared to migratory cells on plastic or fibronectin, or as compared to stationary cells on any substrate. Laminin appears to recruit GalTase from preexisting intracellular pools to the growing lamellipodia.^ Double-label indirect immunofluorescence studies indicate that there is an apparent co-localization between some of the surface GalTase and some actin filaments. This relationship was explored by extracting cells prelabeled with anti-GalTase IgG and quantitated by radiolabeled second antibodies. Results show that 79% of the surface GalTase is associated with the cytoskeleton (as judged by detergent insolubility) when monovalent antibodies (Fab) are used. However virtually all (80-100%) of the surface GalTase can be induced to associate with the cytoskeleton when cross-linked with bivalent antibodies. Furthermore, when cells in suspension are incubated with divalent antibodies, an additional 66% of the surface GalTase can be induced to associate with the cytoskeleton. The elevated levels of surface GalTase detectable on cells migrating on laminin also appear to be associated with the cytoskeleton.^ Several lines of evidence suggest that GalTase is associated with F-actin. Data suggest that laminin induces the expression of surface GalTase to the growing lamellipodia where it becomes associated with the cytoskeleton leading to cell spreading and migration. (Abstract shortened with permission of author.) ^
Resumo:
The rate and direction of fibroblast locomotion is regulated by the formation of lamellipodia. In turn, lamellipodal formation is modulated in part by adhesion of that region of the cell from which the lamellipodia will extend or orginate. Cell surface $\beta$1,4-galactosyltransferase (GalTase) is one molecule that has been demonstrated to mediate cellular interactions with extracellular matrices. In the case of fibroblasts, GalTase must be associated with the actin cytoskeleton in order to mediate cellular adhesion to laminin. The object of this study was to determine how altering the quantity of GalTase capable of associating with the cytoskeleton impacts cell motility. Stably transfected cell lines were generated that have increased or decreased levels of surface GalTase relative to its cytoskeleton-binding sites. Biochemical analyses of these cells reveals that there is a limited number of sites on the cytoskeleton with which GalTase can interact. Altering the ratio of GalTase to its cytoskeleton binding sites does not affect the cells' abilities to spread, nor does it affect the localization of cytoskeletally-bound GalTase. It does, however, appear to interfere with stress fiber bundling. Cells with altered GalTase:cytoskeleton ratios change their polarity of laminin more frequently, as compared to controls. Therefore, the ectopic expression of GalTase cytoplasmic domains impairs a cell's ability to control the placement of lamellipodia. Cells were then tested for their ability to respond to a directional stimulus, a gradient of platelet-derived growth factor (PDGF). It was found that the ability of a cell to polarize in response to a gradient of PDGF is directly proportional to the quantity of GalTase associated with its cytoskeleton. Finally, the rate of unidirectional cell migration on laminin was found to be directly dependent upon surface GalTase expression and is inversely related to the ability of surface GalTase to interact with the cytoskeleton. It is therefore proposed that cytoskeletal assembly and lamellipodal formation can be regulated by the altering the ratio of cytoplasmic domains for specific matrix receptors, such as GalTase, relative to their cytoskeleton-binding sites. ^
Resumo:
Wound healing is a conserved survival response whose function is to restore the integrity of the tissue after physical trauma. Despite numerous studies in the wound healing field, the signals and pathways that orchestrate and control the wound healing program are still not entirely known. To identify additional signals and pathways that regulate epidermal wound repair in Drosophila larvae, we performed a pilot in vivo RNAi screen using a live reporter for epidermal morphology and a wounding assay. From our pilot screen we identified Pvr, the Drosophila homolog of the vertebrate PDGF/VEGF receptors, and six other genes as epidermal wound healing genes. Morphological analysis of wound-edge cells lacking Pvr or the Drosophila Jun N-terminal Kinase (JNK), previously implicated in larval wound closure, suggest that Pvr signaling leads to cell process extension into the wound site while JNK mediates transient dedifferentiation of wound-edge epidermal cells. Furthermore, we found that one of the three known Pvr ligands, Pvf1, is also required for epidermal wound closure. Through tissue-specific knock down and rescue experiments, we propose a model in which epidermally-produced Pvf1 may be sequestered into the hemolymph (blood) and that tissue damage locally exposes blood-borne Pvf1 to Pvr receptors on epidermal cells at the wound edge, thus initiating epidermal cell process extension and migration into the wound gap. Together, our data suggest that the Pvr and JNK signaling pathways act in parallel to control different aspects of wound closure and that PDGF/VEGF ligands and receptors may have a conserved autocrine role in epidermal wound closure. ^
Resumo:
The p53 transcription factor is a tumor suppressor and a master regulator of apoptosis and the cell cycle in response to cell stress. In some advanced tumors, such as prostate cancers, the loss of p53 correlates with an increase in the occurrence of metastases. In addition, several groups have suggested that p53 status correlates with changes in cell migration and cell morphology associated with a migratory phenotype. Others have identified several genes with roles in cell migration that are directly transcriptionally regulated by p53. Even so, modulation of cell migration is not widely recognized as a p53 stress response. ^ In an effort to identify novel p53 target genes and expand our knowledge of the p53 transcriptional response, we performed Affymetrix gene expression analysis in p53-null PC3 prostate cancer cells following infection with a control virus or adenoviral construct expressing wild-type p53. Over 300 genes that had not been previously recognized as p53 target genes were identified. Of these genes, 224 were upregulated and 111 were downregulated (p<0.05). Functional over-representation analysis identified cell migration as a significantly over-represented biological function of p53. Further analysis identified two genes that are critical for the control of cell migration as potential p53 targets. One, hyaluronan mediated motility receptor (HMMR), has recently been shown to be a p53 target important for regulation of the cell cycle. Here, we show that HMMR is downregulated by p53 in several cell lines, and HMMR's regulation is dependent on the presence of the cdk inhibitor, p21, and histone deactelyase activity. The other gene, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), itself a tumor suppressor, is shown here, for the first time, as a p53 direct target by ChIP analysis. We next determined the effect of p53 activation on cell migration and found that p53 significantly slows the rate of cell migration in Boyden chamber migration assays and digital videomicroscopy wound healing studies. Further, our studies established the specific roles of CEACAM1 and HMMR in cell migration and determine that loss of CEACAM1 and overexpression of HMMR independently contribute to increased cell migration. Taken together, these studies provide a direct mechanistic link between p53 to the regulatory control of specific target genes that mediate cell adhesion and migration. ^
Resumo:
Research studies on the association between exposures to air contaminants and disease frequently use worn dosimeters to measure the concentration of the contaminant of interest. But investigation of exposure determinants requires additional knowledge beyond concentration, i.e., knowledge about personal activity such as whether the exposure occurred in a building or outdoors. Current studies frequently depend upon manual activity logging to record location. This study's purpose was to evaluate the use of a worn data logger recording three environmental parameters—temperature, humidity, and light intensity—as well as time of day, to determine indoor or outdoor location, with an ultimate aim of eliminating the need to manually log location or at least providing a method to verify such logs. For this study, data collection was limited to a single geographical area (Houston, Texas metropolitan area) during a single season (winter) using a HOBO H8 four-channel data logger. Data for development of a Location Model were collected using the logger for deliberate sampling of programmed activities in outdoor, building, and vehicle locations at various times of day. The Model was developed by analyzing the distributions of environmental parameters by location and time to establish a prioritized set of cut points for assessing locations. The final Model consisted of four "processors" that varied these priorities and cut points. Data to evaluate the Model were collected by wearing the logger during "typical days" while maintaining a location log. The Model was tested by feeding the typical day data into each processor and generating assessed locations for each record. These assessed locations were then compared with true locations recorded in the manual log to determine accurate versus erroneous assessments. The utility of each processor was evaluated by calculating overall error rates across all times of day, and calculating individual error rates by time of day. Unfortunately, the error rates were large, such that there would be no benefit in using the Model. Another analysis in which assessed locations were classified as either indoor (including both building and vehicle) or outdoor yielded slightly lower error rates that still precluded any benefit of the Model's use.^