2 resultados para Log cabins.

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To characterize PubMed usage over a typical day and compare it to previous studies of user behavior on Web search engines. DESIGN: We performed a lexical and semantic analysis of 2,689,166 queries issued on PubMed over 24 consecutive hours on a typical day. MEASUREMENTS: We measured the number of queries, number of distinct users, queries per user, terms per query, common terms, Boolean operator use, common phrases, result set size, MeSH categories, used semantic measurements to group queries into sessions, and studied the addition and removal of terms from consecutive queries to gauge search strategies. RESULTS: The size of the result sets from a sample of queries showed a bimodal distribution, with peaks at approximately 3 and 100 results, suggesting that a large group of queries was tightly focused and another was broad. Like Web search engine sessions, most PubMed sessions consisted of a single query. However, PubMed queries contained more terms. CONCLUSION: PubMed's usage profile should be considered when educating users, building user interfaces, and developing future biomedical information retrieval systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^