3 resultados para Local management
em DigitalCommons@The Texas Medical Center
Resumo:
A census of 925 U.S. colleges and universities offering masters and doctorate degrees was conducted in order to study the number of elements of an environmental management system as defined by ISO 14001 possessed by small, medium and large institutions. A 30% response rate was received with 273 responses included in the final data analysis. Overall, the number of ISO 14001 elements implemented among the 273 institutions ranged from 0 to 16, with a median of 12. There was no significant association between the number of elements implemented among institutions and the size of the institution (p = 0.18; Kruskal-Wallis test) or among USEPA regions (p = 0.12; Kruskal-Wallis test). The proportion of U.S. colleges and universities that reported having implemented a structured, comprehensive environmental management system, defined by answering yes to all 16 elements, was 10% (95% C.I. 6.6%–14.1%); however 38% (95% C.I. 32.0%–43.8%) reported that they had implemented a structured, comprehensive environmental management system, while 30.0% (95% C.I. 24.7%–35.9%) are planning to implement a comprehensive environmental management system within the next five years. Stratified analyses were performed by institution size, Carnegie Classification and job title. ^ The Osnabruck model, and another under development by the South Carolina Sustainable Universities Initiative, are the only two environmental management system models that have been proposed specifically for colleges and universities, although several guides are now available. The Environmental Management System Implementation Model for U.S. Colleges and Universities developed is an adaptation of the ISO 14001 standard and USEPA recommendations and has been tailored to U.S. colleges and universities for use in streamlining the implementation process. In using this implementation model created for the U.S. research and academic setting, it is hoped that these highly specialized institutions will be provided with a clearer and more cost-effective path towards the implementation of an EMS and greater compliance with local, state and federal environmental legislation. ^
Resumo:
The aim of this study was to examine the association between determinants of access to healthcare and preventable hospitalizations, based on Davidson et al.'s framework for evaluating the effects of individual and community determinants on access to healthcare. The study population consisted of the low income, non-elderly, hospitalized adults residing in Harris County, Texas in 2004. The objectives of this study were to examine the proportion of the variance in preventable hospitalizations at the ZIP-code level, to analyze the association between the proximity to the nearest safety net clinic and preventable hospitalizations, to examine how the safety net capacity relates to preventable hospitalizations, to compare the relative strength of the associations of health insurance and the proximity to the nearest safety net clinic with preventable hospitalizations, and to estimate and compare the costs of preventable hospitalizations in Harris County with the average cost in the literature. The data were collected from Texas Health Care Information Collection (2004), Census 2000, and Project Safety Net (2004). A total of 61,841 eligible individuals were included in the final data analysis. A random-intercept multi-level model was constructed with two different levels of data: the individual level and the ZIP-code level. The results of this study suggest that ZIP-code characteristics explain about two percent of the variance in preventable hospitalizations and safety net capacity was marginally significantly associated with preventable hospitalizations (p= 0.062). Proximity to the nearest safety net clinic was not related to preventable hospitalizations; however, health insurance was significantly associated with a decreased risk of preventable hospitalization. The average direct cost was $6,466 per preventable hospitalization, which is significantly different from reports in the literature. ^
Resumo:
The events of the 1990's and early 2000's demonstrated the need for effective planning and response to natural and man-made disasters. One of those potential natural disasters is pandemic flu. Once defined, the CDC stated that program, or plan, effectiveness is improved through the process of program evaluation. (Centers for Disease Control and Prevention, 1999) Program evaluation should be accomplished not only periodically, but in the course of routine administration of the program. (Centers for Disease Control and Prevention, 1999) Accomplishing this task for a "rare, but significant event" is challenging. (Herbold, John R., PhD., 2008) To address this challenge, the RAND Corporation (under contract to the CDC) developed the "Facilitated Look-Backs" approach that was tested and validated at the state level. (Aledort et al., 2006).^ Nevertheless, no comprehensive and generally applicable pandemic influenza program evaluation tool or model is readily found for use at the local public health department level. This project developed such a model based on the "Facilitated Look-Backs" approach developed by RAND Corporation. (Aledort et al., 2006) Modifications to the RAND model included stakeholder additions, inclusion of all six CDC program evaluation steps, and suggestions for incorporating pandemic flu response plans in seasonal flu management implementation. Feedback on the model was then obtained from three LPHD's—one rural, one suburban, and one urban. These recommendations were incorporated into the final model. Feedback from the sites also supported the assumption that this model promotes the effective and efficient evaluation of both pandemic flu and seasonal flu response by reducing redundant evaluations of pandemic flu plans, seasonal flu plans, and funding requirement accountability. Site feedback also demonstrated that the model is comprehensive and flexible, so it can be adapted and applied to different LPHD needs and settings. It also stimulates evaluation of the major issues associated with pandemic flu planning. ^ The next phase in evaluating this model should be to apply it in a program evaluation of one or more LPHD's seasonal flu response that incorporates pandemic flu response plans.^