2 resultados para Local electronic structures
em DigitalCommons@The Texas Medical Center
Resumo:
The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5$\sp\circ$ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1$\sp\circ$ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross-correlation technique were implemented within an experimental radiotherapy picture archival and communication system (RT-PACS) and were used clinically to evaluate the setup variability of two groups of cancer patients treated with and without an alpha-cradle immobilization aid. The tools developed in this project have proven to be very effective and have played an important role in detecting patient alignment errors and field-shape errors in treatment fields formed by a multileaf collimator (MLC). ^
Resumo:
Information technology (IT) in the hospital organization is fast becoming a key asset, particularly in light of recent reform legislation in the United States calling for expanding the role of IT in our health care system. Future payment reductions to hospitals included in current health reform are based on expected improvements in hospital operating efficiency. Since over half of hospital expenses are for labor, improved efficiency in use of labor resources can be critical in meeting this challenge. Policy makers have touted the value of IT investments to improve efficiency in response to payment reductions. ^ This study was the first to directly examine the relationship between electronic health record (EHR) technology and staffing efficiency in hospitals. As the hospital has a myriad of outputs for inpatient and outpatient care, efficiency was measured using an industry standard performance metric – full time equivalent employees per adjusted occupied bed (FTE/AOB). Three hypotheses were tested in this study.^ To operationalize EHR technology adoption, we developed three constructs to model adoption, each of which was tested by separate hypotheses. The first hypothesis that a larger number of EHR applications used by a hospital would be associated with greater staffing efficiency (or lower values of FTE/AOB) was not accepted. Association between staffing efficiency and specific EHR applications was the second hypothesis tested and accepted with some applications showing significant impacts on observed values for FTE/AOB. Finally, the hypothesis that the longer an EHR application was used in a hospital would be associated with greater labor efficiency was not accepted as the model showed few statistically significant relationships to FTE/AOB performance. Generally, there does not appear a strong relationship between EHR usage and improved labor efficiency in hospitals.^ While returns on investment from EHR usage may not come from labor efficiencies, they may be better sought using measures of quality, contribution to an efficient and effective local health care system, and improved customer satisfaction through greater patient throughput.^