4 resultados para Local Field Potentials
em DigitalCommons@The Texas Medical Center
Resumo:
BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
Resumo:
The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat's locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC's baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization.
Resumo:
Background. Pulsed-field gel electrophoresis (PFGE) is a laboratory technique in which Salmonella DNA banding patterns are used as molecular fingerprints for epidemiologic study for "PFGE clusters". State and national health departments (CDC) use PFGE to detect clusters of related cases and to discover common sources of bacteria in outbreaks. ^ Objectives. Using Houston Department of Health and Human Services (HDHHS) data, the study sought: (1) to describe the epidemiology of Salmonella in Houston, with PFGE subtype as a variable; and (2) to determine whether PFGE patterns and clusters detected in Houston were local appearances of PFGE patterns or clusters that occurred statewide. ^ Methods. During the years 2002 to 2005, the HDHHS collected and analyzed data from routine surveillance of Salmonella. We implemented a protocol, between May 1, 2007 and December 31, 2007, in which PFGE patterns from local cases were sent via e-mail to the Texas Department of State Health Services, to verify whether the local PFGE patterns were also part of statewide clusters. PFGE was performed from 106 patients providing a sample from which Salmonella was isolated in that time period. Local PFGE clusters were investigated, with the enhanced picture obtained by linking local PFGE patterns to PFGE patterns at the state and national level. ^ Results. We found that, during the years 2002 to 2005, there were 66 PFGE clusters, ranging in size from 2 to 22 patients within each cluster. Between different serotypes, there were marked differences in the sizes of PFGE clusters. A common source or risk factor was found in fewer than 5 of the 66 PFGE clusters. With the revised protocol, we found that 19 of 66 local PFGE patterns were indistinguishable from PFGE patterns at Texas DSHS. During the eight months, we identified ten local PFGE clusters with a total of 42 patients. The PFGE pattern for eight of the ten clusters matched the PFGE patterns for cases reported to Texas DSHS from other geographic areas. Five of the ten PFGE patterns matched PFGE patterns for clusters under investigation at PulseNet at the national level. HDHHS epidemiologists identified a mode of transmission in two of the ten local clusters and a common risk factor in a third local cluster. ^ Conclusion. In the extended-study protocol, Houston PFGE patterns were linked to patterns seen at the state and national level. The investigation of PFGE clusters was more efficacious in detecting a common transmission when local data were linked to state and national data. ^