2 resultados para Liquidus Temperatures

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hot foods served in foodservice establishments, institutions and homes, have always been regarded as safe, since cooking temperatures are more likely to kill the bacterial agents that may cause foodborne diseases. However, foods that are otherwise served hot have been epidemiologically incriminated for causing foodborne diseases. This situation arises due to the possible post-cooking food contamination. Post-cooking contamination of hot-held food is most threatening for it gives the contaminating agents the possibility of proliferation. On one hand, post-cooking contamination is least understood and on the other, hot-holding of food gives the consumer a false sense of freedom from foodborne diseases. In this study, the dynamics of food contamination before or after cooking and during hot-holding are discussed and a food contamination dynamics model is presented.^ The literature on foodborne cholera, cholera-like diarrhea, shigellosis and E. coli gastroenteritis together with the literature on the occurrence and growth of the causative enteropathogens; 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli were reviewed. The literature on the infective doses of these organisms were also cited.^ In the study, four cooked food types held hot at 40-60(DEGREES)C were deliberately contaminated with 01 V. cholerae, non-01 V. cholerae, S. sonnei, S. flexneri and E. coli, one at a time at each of the hot-holding temperatures. Tested food samples for the recovery of these enteropathogens were withdrawn at various time intervals of hot holding.^ The results showed bacterial recovery to decline with increasing temperature and with increasing hot-holding time within each holding temperature. All the bacterial types except V. cholerae were recovered even after holding the food at 60(DEGREES)C for one hour. V. cholerae was not recovered after hot-holding the food at 50-60(DEGREES)C at certain holding periods. After 48 hrs incubation, V. cholerae was recovered on TCBS agar plates that read negative after the initial 24 hrs of incubation. Effective hot-holding temperatures were determined for each of the food types contaminated by each of the bacterial types.^ Statistical analysis of the collected data showed temperature, bacterial type and their interaction to be significant in enteropathogen recovery. Food type and its interactions with temperature and bacterial type were found not significant. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exposure system was constructed to evaluate the performance of a personal organic vapor dosimeter (3520 OVM) at ppb concentrations of nine selected target volatile organic compounds (VOCs). These concentration levels are generally encountered in community air environments, both indoor and outdoor. It was demonstrated that the chamber system could provide closely-controlled conditions of VOC concentrations, temperature and relative humidity (RH) required for the experiments. The target experimental conditions included combinations of three VOC concentrations (10, 20 and 200 $\rm\mu g/m\sp3),$ three temperatures (10, 25 and 40$\sp\circ$C) and three RHs (12, 50 and 90% RH), leading to a total of 27 exposure conditions. No backgrounds of target VOCs were found in the exposure chamber system. In the exposure chamber, the variation of the temperature was controlled within $\pm$1$\sp\circ$C, and the variation of RH was controlled within $\pm$1.5% at 12% RH, $\pm$2% at 50% RH and $\pm$3% at 90% RH. High-emission permeation tubes were utilized to generate the target VOCs. Various patterns of the permeation rates were observed over time. The lifetimes and permeation rates of the tubes differed by compound, length of the tube and manufacturer. By carefully selecting the source and length of the tubes, and closely monitoring tube weight loss over time, the permeation tubes can be used for delivering low and stable concentrations of VOCs during multiple days.^ The results of this study indicate that the performance of the 3520 OVM is compound-specific and depends on concentration, temperature and humidity. With the exception of 1,3-butadiene under most conditions, and styrene and methylene chloride at very high relative humidities, recoveries were generally within $\pm$25% of theory, indicating that the 3520 OVM can be effectively used over the range of concentrations and environmental conditions tested with a 24-hour sampling period. Increasing humidities resulted in increasing negative bias from full recovery. Reverse diffusion conducted at 200 $\rm\mu g/m\sp3$ and five temperature/humidity combinations indicated severe diffusion losses only for 1,3-butadiene, methylene chloride and styrene under increased humidity. Overall, the results of this study do not support the need to employ diffusion samplers with backup sections for the exposure conditions tested. ^