9 resultados para Lipped Channel Beams
em DigitalCommons@The Texas Medical Center
Resumo:
This study investigated characteristics of optically stimulated luminescent detectors (OSLDs) in protons, allowing comparison to thermoluminescent detectors, and to be implemented into the Radiological Physics Center’s (RPC) remote audit quality assurance program for protons, and for remote anthropomorphic phantom irradiations. The OSLDs used were aluminum oxide (Al2O3:C) nanoDots from Landauer, Inc. (Glenwood, Ill.) measuring 10x10x2 mm3. A square, 20(L)x20(W)x0.5(H) cm3 piece of solid water was fabricated with pockets to allow OSLDs and TLDs to be irradiated simultaneously and perpendicular to the beam. Irradiations were performed at 5cm depth in photons, and in the center of a 10 cm SOBP in a 200MeV proton beam. Additionally, the Radiological Physics Center’s anthropomorphic pelvic phantom was used to test the angular dependence of OSLDs in photons and protons. A cylindrical insert in the phantom allows the dosimeters to be rotated to any angle with a fixed gantry angle. OSLDs were irradiated at 12 angles between 0 and 360 degrees. The OSLDs were read out with a MicroStar reader from Landauer, Inc. Dose response indicates that at angles where the dosimeter is near parallel with the radiation beam response is reduced slightly. Measurements in proton beams do not show significant angular dependence. Post-irradiation fading of OSLDs was studied in proton beams to determine if the fading was different than that of photons. The fading results showed no significant difference from results in photon beams. OSLDs and TLDs are comparable within 3% in photon beams and a correction factor can be posited for proton beams. With angular dependence characteristics defined, OSLDs can be implemented into multiple-field treatment plans in photons and protons and used in the RPC’s quality assurance program.
Resumo:
Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.
Resumo:
A membrane fraction (M$\sb{\rm PS}$), enriched in Cl$\sp-$ channels, has been isolated from bovine tracheal epithelia and renal cortex homogenates by hydrophobic chromatography. The tracheal fraction shows a 37 fold enrichment of Cl$\sp-$ channels over crude tracheal homogenates by net Cl$\sp-$ measurements in membrane vesicles. Alkaline phosphatase and (Na$\sp+$ + K$\sp+$)-ATPase are not found in these membranes, suggesting that they are not apical or basolateral plasma membranes. The M$\sb{\rm PS}$ fraction exhibits a protein profile unlike that of other membrane fractions with major proteins of 200 kDa and 42 kDa, proteins of 30 to 35 kDa, and lesser amounts of other proteins. Reconstitution of M$\sb{\rm PS}$ fractions from both trachea and kidney into planar lipid bilayers demonstrates the presence of a single type of anion channel. The current-voltage relationship of this channel is linear with a slope conductance of 84 pS in symmetrical 400 mM KCl, and is identical to that of the predominant anion channel observed in tracheal apical membranes under similar conditions (Valdivia, Dubinsky, and Coronado. Science, 1988). In addition, the voltage dependence, selectivity sequence of Cl$\sp- >$ Br$\sp- \ge$ I$\sp-$, and inhibition by low concentrations of the Cl$\sp-$ channel blocker, DIDS, correspond to those of the predominant apical membrane channel. Thus, although the M$\sb{\rm PS}$ fraction appears to be of subcellular origin, it may be functionally related to an apical membrane Cl$\sp-$ permeability. When renal M$\sb{\rm PS}$ membranes were treated with the detergent octyl-glucoside (OG, 2%) and centrifuged, the supernatant, sM$\sb{\rm PS}$, showed a 2 to 7-fold enrichment in specific Cl$\sp-$ flux activity compared with the detergent treated M$\sb{\rm PS}$. These solubilized proteins were then size fractionated on a Superose 12 HPLC gel filtration column, followed by fractionation on a Mono Q HPLC anion exchange column. Fractions that eluted in high salt consistently exhibited significant Cl$\sp-$ flux activity. These fractions had protein profiles consisting of a major band at 34 kDa, a band at 66 kDa, and variable faint bands. Fractions eluting in lower salt had protein profiles consisting of a single band at 34 kDa, and often had little or no Cl$\sp-$ flux activity. However, co-reconstitution of the low salt, solely 34 kDa protein-containing Mono Q fractions with sM$\sb{\rm PS}$ resulted in an enhancement of flux activity compared to that of sM$\sb{\rm PS}$ reconstituted alone. Flux assays of active Mono Q fractions showed that the channel retained its DIDS sensitivity. Applying sM$\sb{\rm PS}$ to a DIDS-affinity column and eluting with salt resulted in fractions with protein profiles again consisting of at least one major band at 34 kDa, a band at 66 kDa, and variable faint bands. Co-reconstitution with sM$\sb{\rm PS}$ again resulted in an enhancement of activity. Thus, the 34 kDa protein appears to be a component of the M$\sb{\rm PS}$ Cl$\sp-$ channel. ^
Resumo:
With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers.^ For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber.^ For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent.^ The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response. ^
Resumo:
The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.
Resumo:
This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).