3 resultados para Learning organization
em DigitalCommons@The Texas Medical Center
Cerebellar mechanisms for motor learning: Testing predictions from a large-scale computer simulation
Resumo:
The cerebellum is the major brain structure that contributes to our ability to improve movements through learning and experience. We have combined computer simulations with behavioral and lesion studies to investigate how modification of synaptic strength at two different sites within the cerebellum contributes to a simple form of motor learning—Pavlovian conditioning of the eyelid response. These studies are based on the wealth of knowledge about the intrinsic circuitry and physiology of the cerebellum and the straightforward manner in which this circuitry is engaged during eyelid conditioning. Thus, our simulations are constrained by the well-characterized synaptic organization of the cerebellum and further, the activity of cerebellar inputs during simulated eyelid conditioning is based on existing recording data. These simulations have allowed us to make two important predictions regarding the mechanisms underlying cerebellar function, which we have tested and confirmed with behavioral studies. The first prediction describes the mechanisms by which one of the sites of synaptic modification, the granule to Purkinje cell synapses (gr → Pkj) of the cerebellar cortex, could generate two time-dependent properties of eyelid conditioning—response timing and the ISI function. An empirical test of this prediction using small, electrolytic lesions of the cerebellar cortex revealed the pattern of results predicted by the simulations. The second prediction made by the simulations is that modification of synaptic strength at the other site of plasticity, the mossy fiber to deep nuclei synapses (mf → nuc), is under the control of Purkinje cell activity. The analysis predicts that this property should confer mf → nuc synapses with resistance to extinction. Thus, while extinction processes erase plasticity at the first site, residual plasticity at mf → nuc synapses remains. The residual plasticity at the mf → nuc site confers the cerebellum with the capability for rapid relearning long after the learned behavior has been extinguished. We confirmed this prediction using a lesion technique that reversibly disconnected the cerebellar cortex at various stages during extinction and reacquisition of eyelid responses. The results of these studies represent significant progress toward a complete understanding of how the cerebellum contributes to motor learning. ^
Resumo:
This investigation focused on how people cope with the demands of their environment in a competent manner. It sought to assess the effects of learning competent coping behaviors on self-reported well-being. The study chose a community-evolved, organized effort on the part of a group of neighborhoods to build competence in the Mexican-American community of East Los Angeles. This network was a citizen-action organization called the United Neighborhoods Organization. UNO was selected because it concentrated on developing community leaders by using spiritual beliefs and family values as shared community resources. Neighborhood leaders were encouraged to engage in risk-taking and confrontation maneuvers. They were also taught problem-solving skills and provided with social support.^ A survey instrument was developed to assess sociodemographic characteristics, acculturation history and status, willingness to engage in risk-taking and confrontation and self-perceived general well-being. The study relied on eight months of daily participant-observation of the organization, the East Los Angeles environment and the interaction between the two. At the end of the observation period, a sample of 150 UNO participants were given the survey questionnaire as was a matched group of 150 non-UNO participants who were ELA residents.^ The study sample was mostly women, in their middle age years who had lived in the area from 5 to more than 30 years. Significantly more single persons were found in the UNO group. The sample was almost equally divided into English and Spanish speaking respondents. Acculturatively almost all the sample fell in the Very Mexican and Mostly Mexican types. The survey found a trend of association between participating in UNO and reporting feeling well. A statistically significant association was found among UNO participants between taking risks and reporting feeling well, regardless of a tendency for all the sample to minimize risk. A trend was seen for married UNO participants to report feeling well. Slightly more UNO participants were willing to engage in confrontation and a substantial proportion of the participants who were confronters reported feeling well in comparison to their counterparts. Ethnic pride was positively associated with participation in UNO and showed a trend in the expected direction with reported self-perceived well-being. ^
Resumo:
Primary motor cortex (M1) is involved in the production of voluntary movement and contains a complete functional representation, or map, of the skeletal musculature. This functional map can be altered by pathological experiences, such as peripheral nerve injury or stroke, by pharmacological manipulation, and by behavioral experience. The process by which experience-dependent alterations of cortical function occur is termed plasticity. In this thesis, plasticity of M1 functional organization as a consequence of behavioral experience was examined in adult primates (squirrel monkeys). Maps of movement representations were derived under anesthesia using intracortical microstimulation, whereby a microelectrode was inserted into the cortex to electrically stimulate corticospinal neurons at low current levels and evoke movements of the forelimb, principally of the hand. Movement representations were examined before and at several times after training on behavioral tasks that emphasized use of the fingers. Two behavioral tasks were utilized that dissociated the repetition of motor activity from the acquisition of motor skills. One task was easy to perform, and as such promoted repetitive motor activity without learning. The other task was more difficult, requiring the acquisition of motor skills for successful performance. Kinematic analysis indicated that monkeys used a consistent set of forelimb movements during pellet extractions. Functional mapping revealed that repetitive motor activity during the easier task did not produce plastic changes in movement representations. Instead, map plasticity, in the form of selective expansions of task-related movement representations, was only produced following skill acquisition on the difficult task. Additional studies revealed that, in general, map plasticity persisted without further training for up to three months, in parallel with the retention of task-related motor skills. Also, extensive additional training on the small well task produced further improvements in performance, and further changes in movement maps. In sum, these experiments support the following three conclusions regarding the role of M1 in motor learning. First, behaviorally-driven plasticity is learning-dependent, not activity-dependent. Second, plastic changes in M1 functional representations represent a neural correlate of acquired motor skills. Third, the persistence of map plasticity suggests that M1 is part of the neural substrate for the memory of motor skills. ^