5 resultados para Lateral rotation of the tibia
em DigitalCommons@The Texas Medical Center
Resumo:
Electrophysiological experiments were performed on 96 male New Zealand white rabbits, anesthetized with urethane. Glass electrodes, filled with 2M NaCl, were used for microstimulation of three fiber pathways projecting from "limbic" centers to the ventromedial nucleus of the hypothalamus (VMH). Unitary and field potential recordings were made in the VMH after stimulation.^ Stimulation of the lateral portion of the fimbria, which carries fibers from the ventral subiculum of the hippocampal formation, evokes predominantly an inhibition of neurons medially in the VMH, and excitation of neurons located laterally.^ Stimulation of the dorsal portion of the stria terminalis, which carries fibers from the cortical nucleus of the amygdala, also produces predominantly an inhibition of cells medially and excitation laterally.^ Stimulation of the ventral component of the stria terminalis, which carries fibers from the medial nucleus of the amygdala, evokes excitation of cell medially, with little or no response seen laterally.^ Cells recorded medially in the VMH received convergent inputs from each of the three fiber systems: inhibition from fimbria and dorsal stria stimulation, excitation from ventral stria stimulation.^ The excitatory unitary responses recorded medially to ventral stria stimulation and laterally to fimbria and dorsal stria stimulation were subjected to a series of threshold stimulus intensities. From these tests it was determined that each of these three projections terminates monosynaptically on VMH neurons.^ The evidence for convergence upon single VMH neurons of projections from the amygdala and the hippocampal formation suggests this area of the brain to be important for integration of information from these two limbic centers. The VMH has been implied in a number of behavioral states: eating, reproduction, defense and aggression; it has further been linked to control of the anterior pituitary. These data provide a functional circuit through which the amygdaloid complex and the hippocampal formation can channel information from higher cortical centers into a hypothalamic area capable of coordinating behavioral and hormonal responses. ^
Resumo:
Objective: To investigate hemodynamic responses to lateral rotation. ^ Design: Time-series within a randomized controlled trial pilot study. ^ Setting: A medical intensive care unit (ICU) and a medical-surgical ICU in two tertiary care hospitals. ^ Patients: Adult patients receiving mechanical ventilation. ^ Interventions: Two-hourly manual or continuous automated lateral rotation. ^ Measurements and Main Results: Heart rate (HR) and arterial pressure were sampled every 6 seconds for > 24 hours, and pulse pressure (PP) was computed. Turn data were obtained from a turning flow sheet (manual turn) or with an angle sensor (automated turn). Within-subject ensemble averages were computed for HR, mean arterial pressure (MAP), and PP across turns. Sixteen patients were randomized to either the manual (n = 8) or automated (n = 8) turn. Three patients did not complete the study due to hemodynamic instability, bed malfunction or extubation, leaving 13 patients (n = 6 manual turn and n = 7 automated turn) for analysis. Seven patients (54%) had an arterial line. Changes in hemodynamic variables were statistically significant increases ( p < .05), but few changes were clinically important, defined as ≥ 10 bpm (HR) or ≥ 10 mmHg (MAP and PP), and were observed only in the manual-turn group. All manual-turn patients had prolonged recovery to baseline in HR, MAP and PP of up to 45 minutes (p ≤ .05). No significant turning-related periodicities were found for HR, MAP, or PP. Cross-correlations between variables showed variable lead-lag relations in both groups. A statistically, but not clinically, significant increase in HR of 3 bpm was found for the manual-turn group in the back compared with the right lateral position ( F = 14.37, df = 1, 11, p = .003). ^ Conclusions: Mechanically ventilated critically ill patients experience modest hemodynamic changes with manual lateral rotation. A clinically inconsequential increase in HR, MAP, and PP may persist for up to 45 minutes. Automated lateral rotation has negligible hemodynamic effects. ^
Resumo:
Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.
Resumo:
BACKGROUND: : Women at increased risk of breast cancer (BC) are not widely accepting of chemopreventive interventions, and ethnic minorities are underrepresented in related trials. Furthermore, there is no validated instrument to assess the health-seeking behavior of these women with respect to these interventions. METHODS: : By using constructs from the Health Belief Model, the authors developed and refined, based on pilot data, the Breast Cancer Risk Reduction Health Belief (BCRRHB) scale using a population of 265 women at increased risk of BC who were largely medically underserved, of low socioeconomic status (SES), and ethnic minorities. Construct validity was assessed using principal components analysis with oblique rotation to extract factors, and generate and interpret summary scales. Internal consistency was determined using Cronbach alpha coefficients. RESULTS: : Test-retest reliability for the pilot and final data was calculated to be r = 0.85. Principal components analysis yielded 16 components that explained 64% of the total variance, with communalities ranging from 0.50-0.75. Cronbach alpha coefficients for the extracted factors ranged from 0.45-0.77. CONCLUSIONS: : Evidence suggests that the BCRRHB yields reliable and valid data that allows for the identification of barriers and enhancing factors associated with use of breast cancer chemoprevention in the study population. These findings allow for tailoring treatment plans and intervention strategies to the individual. Future research is needed to validate the scale for use in other female populations. Cancer 2009. (c) 2009 American Cancer Society.
Resumo:
The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.