4 resultados para Late embryonic loss
em DigitalCommons@The Texas Medical Center
Resumo:
The tumor suppressor p53 is mutated in over 50% of human sporadic tumors originating from diverse tissues. p53 responds to DNA damage and cell stress by activating the transcription of a variety of target genes, the protein products of which then initiate either growth arrest or apoptosis. ^ A p53 target with a particularly intriguing function is the oncogene MDM2. MDM2 functions, in part, by binding to and inhibiting p53's activity. Overexpression of MDM2, by gene amplification, has been found in 30% of human sarcomas harboring a wild type p53, indicating that an increase in MDM2 levels is sufficient for p53 inactivation. Mice carrying a homozygous null allele for mdm2 exhibit an early embryonic lethality that is completely rescued in a p53-null background. These data indicate that MDM2's only critical function in early mouse embryogenesis is the negative regulation of p53. ^ The mdmx gene is the first additional member of the mdm2 gene family to be isolated. MDMX, like MDM2, contains a RING-finger domain, ATP binding domain and a p53 binding domain, which retains the ability to bind and inhibit p53 transactivation in vitro. However, mdmx does not appear to be transcriptionally regulated by p53. We have cloned and characterized the murine mdmx genomic locus from a mouse 129 genomic library. The mdmx gene contains 11 exons, spans approximately 37 Kb of DNA, and is located on mouse chromosome 1. The genomic organization of the mdmx gene is identical to that of mdm2 except at the 5′ end of the gene near the p53 responsive element. Northern expression analysis of mdmx transcripts during mouse embryogenesis and in adult tissues revealed constitutive and ubiquitous expression throughout adult tissues and embryonic development. To determine the in vivo function of MDMX, mice carrying a null allele of mdmx have been generated. Mdmx homozygous null mice are early embryonic lethal. Mdmx null mice do not develop beyond 9.5 dpc and can be discerned by gross dissection as early as 7.5 dpc. Utilizing TUNEL and BrdU assays on 7.5 dpc histological sections we have determined that the mutant embryos are dying due to increased levels of growth arrest, but not apoptosis. Surprisingly, Mdmx homozygous null mice are viable in a p53 null background, indicating that MDMX is also very important in the negative regulation of p53. ^
Resumo:
The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewal-even when these cells are grown under self-renewal conditions-and lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.
Resumo:
Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^
Resumo:
Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^