4 resultados para Lance (Missile)

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS: Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS: For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION: Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ssel/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a carboxyl-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an amino-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Δ phenotypes. Surprisingly, all mutants predicted to abolish ATP hydrolysis complemented the temperature sensitivity of sse1Δ, whereas mutations in predicted ATP binding residues were non-functional. Remarkably, the two domains of Ssel when expressed in trans functionally complement the sse1Δ growth phenotype and interact by coimmunoprecipitation analysis, indicative of a novel type of interdomain communication. ^ Relatively little is known regarding the interactions and cellular functions of Ssel. Through co-immunoprecipitation analysis, we found that Ssel forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. The ATPase domains of Ssel and the Hsp70s were found to be critical for interaction as inactivating point mutations severely reduced interaction efficiency. Ssel stimulated Ssal ATPase activity synergistically with the co-chaperone Ydj1 via a novel nucleotide exchange activity. Furthermore, FES1, another Ssa nucleotide exchange factor, can functionally substitute for SSE1/2 when overexpressed, suggesting that Hsp70 nucleotide exchange is the fundamental role of the Sse proteins in yeast, and by extension, the Hsp110 homologs in mammals. ^ Cells lacking SSE1 were found to accumulate prepro-α-factor, but not the cotranslationally imported protein Kar2, similar to mutants in the Ssa chaperones. This indicates that the interaction between Ssel and Ssa is functionally significant in vivo. In addition, sse10 cells are compromised for cell wall strength, likely a result of decreased Hsp90 chaperone activity with the cell integrity MAP kinase SIC. Taken together, this work established that the Hsp110 family must be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.^