9 resultados para Lagrangien augmenté
em DigitalCommons@The Texas Medical Center
Resumo:
Opioids dominate the field of pain management because of their ability to provide analgesia in many medical circumstances. However, side effects including respiratory depression, constipation, tolerance, physical dependence, and the risk of addiction limit their clinical utility. Fear of these side effects results in the under-treatment of acute pain. For many years, research has focused on ways to improve the therapeutic index (the ratio of desirable analgesic effects to undesirable side effects) of opioids. One strategy, combining opioid agonists that bind to different opioid receptor types, may prove successful.^ We discovered that subcutaneous co-administration of a moderately analgesic dose of the mu-opioid receptor (MOR) selective agonist fentanyl (20μg/kg) with subanalgesic doses of the less MOR-specific agonist morphine (100ng/kg-100μg/kg), augmented acute fentanyl analgesia in rats. Parallel [35S]GTPγS binding studies using naïve rat substantia gelatinosa membrane treated with fentanyl (4μM) and morphine (1nM-1pM) demonstrated a 2-fold increase in total G-protein activation. This correlation between morphine-induced augmentation of fentanyl analgesia and G-protein activation led to our proposal that interactions between MORs and DORs underlie opioid-induced augmentation. We discovered that morphine-induced augmentation of fentanyl analgesia and G-protein activity was mediated by DORs. Adding the DOR-selective antagonist naltrindole (200ng/kg, 40nM) at doses that did not alter the analgesic or G-protein activation of fentanyl, blocked increases in analgesia and G-protein activation induced by fentanyl/morphine combinations. Equivalent doses of the MOR-selective antagonist cyprodime (20ng/kg, 4nM) did not block augmentation. Substitution of the DOR-selective agonist SNC80 for morphine yielded similar results, further supporting our conclusion that interactions between MORs and DORs are responsible for morphine-induced augmentation of fentanyl analgesia and G-protein activation. Confocal microscopy of rat substantia gelatinosa showed that changes in the rate of opioid receptor internalization did not account for these effects.^ In conclusion, fentanyl analgesia augmentation by subanalgesic morphine is mediated by increased G-protein activation resulting from functional interactions between MORs and DORs, not changes in MOR internalization. Additional animal and clinical studies are needed to determine whether side effect incidence changes following opioid co-administration. If side effect incidence decreases or remains unchanged, these findings could have important implications for clinical pain treatment. ^
Resumo:
The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and beta-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins.
Resumo:
Most skin cancers induced in mice by Ultraviolet (UV) radiation express highly immunogenic Tumor specific transplantation antigens (TSTAs) and thus exhibit a regressor phenotype. In this study, I have used cloned genes encoding tumor antigens and oncogenes in conjunction with DNA transfection technique to isolate and characterize regressor variants from progressor tumors and vice versa. The purpose of this study was (1) to determine whether the product of a cloned gene (216) from UV-1591 tumor, which encodes a novel MHC class I antigen can function as a tumor rejection antigen when expressed on unrelated, nonantigenic, murine tumor cells or whether its function is restricted to UV-induced tumors, and (2) to determine the processes by which progressor variants derived from a regressor UV-2240 cell line by transfection with an activated Ha-ras oncogene escape the immune defenses of the normal immunocompetent host.^ To answer the first question, a spontaneously transformed, nonimmunogenic cell line (10T-1) was cotransfected with DNA from p216 and pSV2-neo plasmids. Results demonstrate that the product of a cloned TSTA gene from a UV-induced murine tumor is capable of functioning as a tumor rejection antigen when expressed on unrelated, nonantigenic tumor cells. In addition, these results indicate that this approach could be used to augment the immune response against poorly antigenic tumors.^ To answer the second question, progressor variants were isolated from a highly antigenic UV radiation-induced C3H mouse regressor fibrosarcoma cell line, UV-2240, by transfection with an activated Ha-ras oncogene. Subcutaneous injection of Ha-ras-transfected UV-2240 cells into immunocompetent C3H mice produced tumors in 4 of 36 animals. In addition, the Ha-ras-induced progressor variants produced experimental lung metastasis in both normal C3H and nude mice, although they induced more lung nodules in nude mice than in normal C3H mice. Results indicate that the progressor phenotype of the Ha-ras-induced tumor variants is not due to loss of TSTAs or MHC class I antigens. This implies that some tumors can escape the immune defenses of the normal immunocompetent host by mechanisms other than the loss of TSTAs and MHC class I antigens. (Abstract shortened with permission of author.) ^
Resumo:
Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^
Resumo:
The Education for All Handicapped Children Act of 1975, P.L. 94-142, created a new challenge for the nation's public school systems. During 1982-1983, a national study, called the "Collaborative Study of Children with Special Needs", was conducted in 5 metropolitan school districts to evaluate the effectiveness of education and health care services of children in kindergarten to 6th grade being provided under P.L. 94-142 programs. This dissertation (the Substudy) was undertaken to augment the findings of the Collaborative Study. The purpose of this study was to develop a database to provide descriptive information on the demographic, service and health characteristics of a small group of 3 and 4 year old handicapped children served by the Houston Independent School District (HISD) during 1982-1983.^ The study involved a stratified sample of 105 three and four year old children divided into 3 groups according to type of handicapping condition.^ The results of the study gave a clearer picture of the demographic characteristics of these Pre-K children. Specifically, sex ratio was approximately one, lower than the national norm. Family and socioeconomic characteristics were assessed.^ The study used an independence/dependence index composed of 11 items on the parent questionnaire to assess the level of functional independence of each child. An association was found between index scores and parent-reported effects of the child on family activity. Parents who said that their child's condition had affected the family's job situation, housing accomodations, vacation plans, marriage, choice of friends and social activities were also more likely to report less independence in the child. In addition, many of the Substudy children had extensive care-taking needs reflected in specific components of the index such as dressing, feeding, toileting or moving about the house.^ In general the results of the Pre-K Substudy indicate that at the early childhood level, the HISD special education program is functioning well in most areas and that parents are very satisfied with the program. (Abstract shortened with permission of author.)^
Resumo:
NKG2D (natural killer group 2, member D) and its ligands interaction in tumor microenvironment directs tumor infiltrating immune cells to recognize tumor cells, stimulate cytotoxic effector immune cells, and therefore eradicate tumor cells. IL-12, a cytokine produced by antigen presenting cells, has remarkable antitumor effect by activating innate and adaptive immunity. Doxorubicin, a commonly used chemotherapeutic agent also boosts the host antitumor immune response to cause tumor cell death. Our previous publication suggests that IL-12 plus doxorubicin enhances NKG2D function-dependent inhibition of tumor progression and promotes CD8+T cells infiltrating into tumors. The purpose of this study is to determine the underlying mechanism. Our study reveals a novel function of doxorubicin, which is to augment IL-12–induced NKG2D expression in CD8+T cells but not in NK or CD4+T cells. This observation was further validated by NK and CD8+T cell-depletion studies, in which only depletion of CD8+T cells abolished the expression of NKG2D in lymphocytes. The induced NKG2D expression in CD8+T cells is tightly associated with tumor-specific localization of CD8+T cells and improved antitumor efficacy. The IL-12 plus doxorubicin treatment-induced antitumor efficacy is also due to NKG2D ligand Rae-1 induction in tumors. Rae-1 induction in tumors is a long term effect in multiple tumor models, but not in normal tissues. A novel CD8+T cell direct contact dependent mechanism accounts for Rae-1 induction in vivo and in vitro, and CD80 is the receptor through which CD8+T cells interplay with tumor cells to upregulate Rae-1 on tumor cells. In summary, increased NKG2D expression in CD8+T cells in response to IL-12 plus doxorubicin was closely associated with tumor-specific localization of CD8+T cells and greater antitumor efficacy of the combined regimen than either agent alone. NKG2D ligand Rae-1 induction is triggered by the interaction of CD80 on tumor cells with tumor infiltrating CD+8 T cells.
Resumo:
There are two practical challenges in the phase I clinical trial conduct: lack of transparency to physicians, and the late onset toxicity. In my dissertation, Bayesian approaches are used to address these two problems in clinical trial designs. The proposed simple optimal designs cast the dose finding problem as a decision making process for dose escalation and deescalation. The proposed designs minimize the incorrect decision error rate to find the maximum tolerated dose (MTD). For the late onset toxicity problem, a Bayesian adaptive dose-finding design for drug combination is proposed. The dose-toxicity relationship is modeled using the Finney model. The unobserved delayed toxicity outcomes are treated as missing data and Bayesian data augment is employed to handle the resulting missing data. Extensive simulation studies have been conducted to examine the operating characteristics of the proposed designs and demonstrated the designs' good performances in various practical scenarios.^
Resumo:
Documented risks of physical activity include reduced bone mineral density at high activity volume, and sudden cardiac death among adults and adolescents. Further illumination of these risks is needed to inform future public health guidelines. The present research seeks to 1) quantify the association between physical activity and bone mineral density (BMD) across a broad range of activity volume, 2) assess the utility of an existing pre-screening questionnaire among US adults, and 3) determine if pre-screening risk stratification by questionnaire predicts referral to physician among Texas adolescents. ^ Among 9,468 adults 20 years of age or older in the National Health and Nutrition Examination Survey (NHANES) 2007-2010, linear regression analyses revealed generally higher BMD at the lumbar spine and proximal femur with greater reported activity volume. Only lumbar BMD in women was unassociated with activity volume. Among men, BMD was similar at activity beyond four times the minimum volume recommended in the Physical Activity Guidelines. These results suggest that the range of activity reported by US adults is not associated with low BMD at either site. ^ The American Heart Association / American College of Sports Medicine Preparticipation Questionnaire (AAPQ) was applied to 6,661 adults 40 years of age or older from NHANES 2001-2004 by using NHANES responses to complete AAPQ items. Following AAPQ referral criteria, 95.5% of women and 93.5% of men would be referred to a physician before exercise initiation, suggesting little utility for the AAPQ among adults aged 40 years or older. Unnecessary referral before exercise initiation may present a barrier to exercise adoption and may strain an already stressed healthcare infrastructure. ^ Among 3181 athletes in the Texas Adolescent Athlete Heart Screening Registry, 55.2% of boys and 62.2% of girls were classified as high-risk based on questionnaire answers. Using sex-stratified contingency table analyses, risk categories were not significantly associated with referral to physician based on electrocardiogram or echocardiogram, nor were they associated with confirmed diagnoses on follow-up. Additional research is needed to identify which symptoms are most closely related to sudden cardiac death, and determine the best methods for rapid and reliable assessment. ^ In conclusion, this research suggests that the volume of activity reported by US adults is not associated with low BMD at two clinically relevant sites, casts doubts on the utility of two existing cardiac screening tools, and raises concern about barriers to activity erected through ineffective screening. These findings augment existing research in this area that may inform revisions to the Physical Activity Guidelines regarding risk mitigation.^