3 resultados para LTH
em DigitalCommons@The Texas Medical Center
Resumo:
An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^
Resumo:
Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^
Resumo:
In various species, peripheral injury produces long-lasting sensitization of central and peripheral neurons representing the affected area. In Aplysia, memory-like traces (lasting days or weeks) of noxious peripheral stimulation include enhancement of central synaptic transmission and enhanced excitability of the central soma and peripheral branches of nociceptive sensory neurons. An important role for the cAMP-PKA-CREB pathway in consolidating long-term memory and inducing transcription-dependent synaptic potentiation has also been indicated by studies in rodents and Drosophila. ^ Much less attention has been paid to the cGMP-PKG pathway for transcription-dependent plasticity. Nevertheless, the cGMP-PKG pathway has been implicated in activity-dependent neural alterations lasting hours, and may trigger some forms of persistent pain. Recent evidence indicates PKG can regulate gene expression in the brain and several properties make it an attractive candidate for inducing long-term memories. ^ This dissertation reports that brief, noxious stimulation of a behaving, semi-intact preparation from mollusc, Aplysia californica, produces transcription-dependent, long-term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and which lasts for at least 24 hours. Intracellular injection of cGMP is sufficient to induce LTH. Similarly, body wall injury induces LTH which can be blocked with specific inhibitors of the NO-cGMP-PKG pathway such as L-NMMA, ODQ, Rp-8-cGMPS, PKI-G and KT5823 by isolated perfusion of pleural ganglion sensory cells in or directly by intracellular injection. In contrast, specific inhibitors of the cAMP-PKA pathway (Rp-8-cAMPS, PKI-A and H-89) failed to block injury-induced LTH. Interestingly, co-injection of the cAMP-responsive element (CRE) blocked the induction of both cAMP and injury-induced LTH, but not cGMP-induced LTH. Furthermore, co-injection of cAMP and cGMP with the Ca2+ buffer BAPTA in reduced Ca2+ seawater blocked cAMP-, but not cGMP-induced LTH. These findings demonstrate that the NO-cGMP-PKG pathway and at least one other pathway (perhaps mediated by Ca2+), but not the cAMP-PKA pathway, are critical for inducing LTH during transient, noxious stimulation.^