17 resultados para LIMBIC SEIZURES

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted to determine the incidence and etiology of neonatal seizures, and evaluate risk factors for this condition in Harris County, Texas, between 1992 and 1994. Potential cases were ascertained from four sources: discharge diagnoses at local hospitals, birth certificates, death certificates, and a clinical study of neonatal seizures conducted concurrent with this study at a large tertiary care center in Houston, Texas. The neonatal period was defined as the first 28 days of life for term infants, and up to 44 weeks gestation for preterm infants.^ There were 207 cases of neonatal seizures ascertained among 116,048 live births, yielding and incidence of 1.8 per 1000. Half of the seizures occurred by the third day of life, 70% within the first week, and 93% within the first 28 days of life. Among 48 preterm infants with seizures 15 had their initial seizure after the 28th day of life. About 25% of all seizures occurred after discharge from the hospital of birth.^ Idiopathic seizures occurred most frequently (0.5/1000 births), followed by seizures attributed to perinatal hypoxia/ischemia (0.4/1000 births), intracranial hemorrhage (0.2/1000 births), infection of the central nervous system (0.2/1000 births), and metabolic abnormalities (0.1/1000 births).^ Risk factors were evaluated based on birth certificate information, using univariate and multivariate analysis (logistic regression). Factors considered included birth weight, gender, ethnicity, place of birth, mother's age, method of delivery, parity, multiple birth and, among term infants, small birth weight for gestational age (SGA). Among preterm infants, very low birth weight (VLBW, $<$1500 grams) was the strongest risk factor, followed by birth in private/university hospitals with a Level III nursery compared with hospitals with a Level II nursery (RR = 2.9), and male sex (RR = 1.8). The effect of very low birth weight varied according to ethnicity. Compared to preterm infants weighing 2000-2999 grams, non-white VLBW infants were 12.0 times as likely to have seizures; whereas white VLBW infants were 2.5 times as likely. Among term infants, significant risk factors included SGA (RR = 1.8), birth in Level III nursery private/university hospitals versus hospitals with Level II nursery (RR = 2.0), and birth by cesarean section (RR = 2.2). ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a multisystem, autosomal dominant disorder affecting approximately 1 in 6000 births. Developmental brain abnormalities cause substantial morbidity and mortality and often lead to neurological disease including epilepsy, cognitive disabilities, and autism. TSC is caused by inactivating mutations in either TSC1 or TSC2, whose protein products are known inhibitors of mTORC1, an important kinase regulating translation and cell growth. Nonetheless, neither the pathophysiology of the neurological manifestations of TSC nor the extent of mTORC1 involvement in the development of these lesions is known. Murine models would greatly advance the study of this debilitating disorder. This thesis will describe the generation and characterization of a novel brain-specific mouse model of TSC, Tsc2flox/ko;hGFAP-Cre. In this model, the Tsc2 gene has been removed from most neurons and glia of the cortex and hippocampus by targeted Cre-mediated deletion in radial glial neuroprogenitor cells. The Tsc2flox/ko;hGFAP-Cre mice fail to thrive beginning postnatal day 8 and die from seizures around 23 days. Further characterization of these mice demonstrated megalencephaly, enlarged neurons, abnormal neuronal migration, altered progenitor pools, hypomyelination, and an astrogliosis. The similarity of these defects to those of TSC patients establishes this mouse as an excellent model for the study of the neuropathology of TSC and testing novel therapies. We further describe the use of this mouse model to assess the therapeutic potential of the macrolide rapamycin, an inhibitor of mTORC1. We demonstrate that rapamycin administered from postnatal day 10 can extend the life of the mutant animals 5 fold. Since TSC is a neurodevelopmental disorder, we also assessed in utero and/or immediate postnatal treatment of the animals with rapamycin. Amazingly, combined in utero and postnatal rapamycin effected a histologic rescue that was almost indistinguishable from control animals, indicating that dysregulation of mTORC1 plays a large role in TSC neuropathology. In spite of the almost complete histologic rescue, behavioral studies demonstrated that combined treatment resulted in poorer learning and memory than postnatal treatment alone. Postnatally-treated animals behaved similarly to treated controls, suggesting that immediate human treatment in the newborn period might provide the most opportune developmental timepoint for rapamycin administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activity-dependent alterations of synaptic transmission important for learning and memory are often induced by Ca(2+) signals generated by depolarization. While it is widely assumed that Ca(2+) is the essential transducer of depolarization into cellular plasticity, little effort has been made to test whether Ca(2+)-independent responses to depolarization might also induce memory-like alterations. It was recently discovered that peripheral axons of nociceptive sensory neurons in Aplysia display long-lasting hyperexcitability triggered by conditioning depolarization in the absence of Ca(2+) entry (using nominally Ca(2+)-free solutions containing EGTA, "0Ca/EGTA") or the absence of detectable Ca(2+) transients (adding BAPTA-AM, "0Ca/EGTA/BAPTA-AM"). The current study reports that depolarization of central ganglia to approximately 0 mV for 2 min in these same solutions induced hyperexcitability lasting >1 h in sensory neuron processes near their synapses onto motor neurons. Furthermore, conditioning depolarization in these solutions produced a 2.5-fold increase in excitatory postsynaptic potential (EPSP) amplitude 1-3 h afterward despite a drop in motor neuron input resistance. Depolarization in 0 Ca/EGTA produced long-term potentiation (LTP) of the EPSP lasting > or = 1 days without changing postsynaptic input resistance. When re-exposed to extracellular Ca(2+) during synaptic tests, prior exposure to 0Ca/EGTA or to 0Ca/EGTA/BAPTA-AM decreased sensory neuron survival. However, differential effects on neuronal health are unlikely to explain the observed potentiation because conditioning depolarization in these solutions did not alter survival rates. These findings suggest that unrecognized Ca(2+)-independent signals can transduce depolarization into long-lasting synaptic potentiation, perhaps contributing to persistent synaptic alterations following large, sustained depolarizations that occur during learning, neural injury, or seizures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To review our clinical experience and determine if there are appropriate signs and symptoms to consider POLG sequencing prior to valproic acid (VPA) dosing in patients with seizures. METHODS: Four patients who developed VPA-induced hepatotoxicity were examined for POLG sequence variations. A subsequent chart review was used to describe clinical course prior to and after VPA dosing. RESULTS: Four patients of multiple different ethnicities, age 3-18 years, developed VPA-induced hepatotoxicity. All were given VPA due to intractable partial seizures. Three of the patients had developed epilepsia partialis continua. The time from VPA exposure to liver failure was between 2 and 3 months. Liver failure was reversible in one patient. Molecular studies revealed homozygous p.R597W or p.A467T mutations in two patients. The other two patients showed compound heterozygous mutations, p.A467T/p.Q68X and p.L83P/p.G888S. Clinical findings and POLG mutations were diagnostic of Alpers-Huttenlocher syndrome. CONCLUSION: Our cases underscore several important findings: POLG mutations have been observed in every ethnic group studied to date; early predominance of epileptiform discharges over the occipital region is common in POLG-induced epilepsy; the EEG and MRI findings varying between patients and stages of the disease; and VPA dosing at any stage of Alpers-Huttenlocher syndrome can precipitate liver failure. Our data support an emerging proposal that POLG gene testing should be considered in any child or adolescent who presents or develops intractable seizures with or without status epilepticus or epilepsia partialis continua, particularly when there is a history of psychomotor regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the fifty-five years since the origin of the modern concept of stress, a variety of neurochemical, physiological, behavioral and pathological data have been collected in order to define stress and catalogue the components of the stress response. Over the last twenty-five years, as interest in the neural mechanisms underlying the stress response grew, most of the studies have focused on the hypothalamus and major limbic structures such as the amygdala or on nuclei involved in neurochemical changes observed during stress. There are other CNS sites, such as the bed nucleus of the stria terminalis (BNST), that neuroanatomical and neurochemical studies suggest may be involved in stress, but these sites have rarely been studied. Four experiments were performed for this dissertation, the goal of which was to examine the BNST to determine its role in the regulation of the stress response. The first experiment demonstrated that electrical stimulation of BNST was sufficient to produce stress-like behaviors. The second experiment demonstrated that single BNST neurons altered their firing rate in response to both a noxious somatosensory stimulus such as tail pinch and electrical stimulation of the amygdala (AmygS). The third experiment showed that the opioid, cholinergic, and noradrenergic systems, three neurotransmitter systems implicated in the control of the stress response, were effective in altering the firing rate of BNST neurons. The fourth experiment demonstrated that the cholinergic effects were mediated via muscarinic receptors and showed that the effects of AmygS were not mediated via cholinergic pathways. Collectively, these findings provide a possible explanation for the nonspecificity in causation of stress and the invariability of the stress response and suggest a neurochemical basis for its pharmacological control. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent reports have suggested the possible association of status epilepticus and multiple organ system failure. The purpose of this case control study was to investigate this association and to identify factors that predispose individuals with status epilepticus (SE) or aborted status epilepticus (ASE) to develop multiple organ system failure (MOSF) or multiple organ system dysfunction (MODS).^ For the purpose of the study, definitions of SE, ASE, MOSF, and MODS were operationalized as follows: SE was defined as any seizure lasting for a duration of $\ge$30 minutes or intermittent seizures lasting for $\ge$30 minutes from which the patient does not regain consciousness. ASE was defined as any seizure lasting for a duration of $\ge$10 minutes but $<$30 minutes and which was aborted as a result of a medical intervention. MOSF was defined as the failure of $\ge$2 organ systems in the same patient; organ system failure was said to be present whenever standard MOSF criteria were met. MODS was defined as the dysfunction of $\ge$2 organ systems in the same patient; organ system dysfunction was said to be present, whenever the monitor(s) of that organ's function exceeded the normal range for the physiological or laboratory parameters.^ Medical records of 686 individuals between the age of 5 and 44 years, with history of seizures needing hospitalization at the Texas Children's Hospital or Methodist Hospital, Houston, Texas, between 1991-95 were reviewed and 100 individuals with SE/ASE were identified. Of these 100 individuals with SE/ASE, 45 developed MOSF/MODS during their hospitalization and 9 of these individuals died. Using multivariate analyses, it was found that adult individuals who had an "acute" etiology of their seizure disorder (OR = 5.23; 95%CI: 0.41, 66.24) and children who had a "remote" etiology of their seizure disorder (OR = 3.92; 95%CI: 0.53, 29.22), were more likely to develop MOSF/MODS compared with those who had other etiologies of the seizure disorder. Individuals with SE lasting more than one hour were more likely to develop MOSF/MODS compared with individuals with SE lasting less than 1 hour (OR = 6.51; 95%CI: 1.63, 25.92). Individuals who presented with the SE/ASE episode as their first seizure episode were more likely to develop MOSF/MODS compared to those with a previous history of seizure episodes (OR = 1.78; 95%CI: 0.36, 8.82).^ The major limitations of this study includes the relatively small sample size and the study being performed in only two institutions. However, this is the first study of this kind and should therefore be viewed as largely exploratory in nature. Future studies should investigate the relationship of the risk factors identified in this study using a larger number of institutions and patients. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrophysiological experiments were performed on 96 male New Zealand white rabbits, anesthetized with urethane. Glass electrodes, filled with 2M NaCl, were used for microstimulation of three fiber pathways projecting from "limbic" centers to the ventromedial nucleus of the hypothalamus (VMH). Unitary and field potential recordings were made in the VMH after stimulation.^ Stimulation of the lateral portion of the fimbria, which carries fibers from the ventral subiculum of the hippocampal formation, evokes predominantly an inhibition of neurons medially in the VMH, and excitation of neurons located laterally.^ Stimulation of the dorsal portion of the stria terminalis, which carries fibers from the cortical nucleus of the amygdala, also produces predominantly an inhibition of cells medially and excitation laterally.^ Stimulation of the ventral component of the stria terminalis, which carries fibers from the medial nucleus of the amygdala, evokes excitation of cell medially, with little or no response seen laterally.^ Cells recorded medially in the VMH received convergent inputs from each of the three fiber systems: inhibition from fimbria and dorsal stria stimulation, excitation from ventral stria stimulation.^ The excitatory unitary responses recorded medially to ventral stria stimulation and laterally to fimbria and dorsal stria stimulation were subjected to a series of threshold stimulus intensities. From these tests it was determined that each of these three projections terminates monosynaptically on VMH neurons.^ The evidence for convergence upon single VMH neurons of projections from the amygdala and the hippocampal formation suggests this area of the brain to be important for integration of information from these two limbic centers. The VMH has been implied in a number of behavioral states: eating, reproduction, defense and aggression; it has further been linked to control of the anterior pituitary. These data provide a functional circuit through which the amygdaloid complex and the hippocampal formation can channel information from higher cortical centers into a hypothalamic area capable of coordinating behavioral and hormonal responses. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research demonstrates cholinergic modulation of thalamic input into the limbic cortex. A projection from the mediodorsal thalamus (MD) to the anterior cingulate cortex was defined anatomically and physiologically. Injections of horse-radish peroxidase into the anterior cingulate cortex labels neurons in the lateral, parvocellular, region of MD. Electrical Stimulation of this area produces a complex field potential in the anterior cingulate cortex which was further characterized by current density analysis and single cell recordings.^ The monsynaptic component of the response was identified as a large negative field which is maximal in layer IV of the anterior cingulate cortex. This response shows remarkable tetanic potentiation of frequencies near 7 Hz. During a train of 50 or more stimuli, the response would grow quickly and remain at a fairly stable potentiated level throughout the train.^ Cholinergic modulation of this thalamic response was demonstrated by iontophoretic application of the cholinergic agonist carbachol decreased the effectiveness of the thalamic imput by rapidly attenuation the response during a train of stimuli. The effect was apparently mediated by muscarinic receptors since the effect of carbachol was blocked by atropine but not by hexamethonium.^ To determine the source of the cingulate cortex cholinergic innervation, lesions were made in the anterior and medial thalamus and in the nucleus of the diagonal band of Broca. The effects of these lesions on choline acetyltranferase activity in the cingulate cortex were determined by a micro-radio-enzymatical assay. Only the lesions of the nucleus of the diagonal band significantly decreased the choline acetyltransferase activity in the cingulate cortex regions. Therefore, the diagonal band appears to be a major source of sensory cholinergic innervation and may be involved in gating of sensory information from the thalamus into the limbic cortex. Attempts to modulate the cingulate response to MD stimulation with electrical stimulation of the diagonal band, however were not successful.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations disabling the retinoblastoma (Rb) pathway are among the most common in human cancers, including brain cancer. These mutations promote tumor development through deregulated control of the E2F family of transcription factors. E2F1 belongs to a class of E2F's identified as transcriptional activators and involved in the G1/S phase transition of the cell. However, E2F-1 presents with a paradox as it is considered to have membership in two gene classes, functioning as both an oncogene and a tumor suppressor. This unusual trait generates a degree of uncertainty on the role that E2F1 plays in the development or maintenance of any given tumor. Here we show that E2F1 functions as an oncogene in brain tumors through the generation of mice engineered to overexpress E2F1 specifically within glial cells and neuronal progenitors as directed by the GFAP promoter. Mice carrying the transgene develop with high penetrance a phenotype characterized by neurological deficits including paresia, ataxia, head tilt and seizures. MRI imagining of the tgE2F1 mice reveals a low incidence of mild hydrocephalus, and most notably, histological analysis demonstrates that 25% of tgE2F1 mice present with the spontaneous formation of malignant brain tumors. Overall these neoplasms show histological features from a wide range of aggressive brain cancers including medulloblastoma, choroid plexus carcinoma, primary neuroectodermic tumor and malignant gliomas. Isolation and characterization of astrocytes from the tgE2F1 animal reveals a highly proliferative population of cells with 55% ± 2.5 of the tgE2F1astrocytes, 35% ± 3.4 normal mouse astrocytes in S-phase and the acquired capacity to grow in anchorage independent conditions. Additionally tgE2F1 astrocytes show an aberrant phenotype with random chromosomal fusions and nearly all cells demonstrating polyploidy. Taken together, this model forces a comparison to human brain tumor formation. Mouse age as related to tumoral mimics the human scenario with juvenile tgE2F1 mice presenting embryonal tumors typically identified in children, and older tgE2F1 mice demonstrating gliomas. In this regard, this study suggests a global role for E2F1 in the formation and maintenance of multilineage brain tumors, irrefutably establishing E2F1 as an oncogene in the brain. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proliferative role of E2F has been under investigation for several years. However, while it is known that E2F1 and E2F4 play a part in development and differentiation, research has not been centered on determining the exact functions these E2Fs play in brain development, given there high expression levels throughout embryogenesis. A GFAP-E2F1 mouse model directing human E2F1 transgene expression to glial cells, such as ependymal cells, was used in the present study in combination with an E2F4 mutant mouse model. Interestingly, 20% of tgE2F1; E2F4 null mice developed a phenotype consisting of domed head, hunched posture, seizures, tremors, hyperactivity or hypeactivity, dysnea, and low body weight. These mice died during the first three weeks of severe hydrocephalus. Similarly, tgE2F1; E2F4 heterozygous mice also develop severe hydrocephalus, although this occurs at 6 weeks at a 2% frequency. Pathological examination of the brains of those animals uncovered enlarged cerebral ventricles with marked thinning of the cerebral cortices, confirming the diagnosis of three-ventricle hydrocephalus, and the absence of tumors. Careful examination of the aqueduct shows an excess of proliferating cells that may cause a blockage of CSF. Of significance, 44% of ependymal cells in hydrocephalic tgE2F1;E2F4-/- mouse brains were positive for BrdU incorporation. Studies determining the molecular rationale for the hydrocephalic phenotype suggest proliferative ependymal cells may not be exclusively related to dysregulated cell cycle in conjuction with E2F activity. Due in part to the deficiency of E2F4 in this mouse model, we find that differentiation of these ependymal cells is not complete and instead undergoes maturation arrest. This suggestion is confirmed by the expression of genes found in neural stem cells or precursor cell populations, in the ependymal cell region of tgE2F1; E2F4-/-. Therefore, from this study, we conclude that dysregulated E2F1 expression in combination with deficient E2F4 expression results in an undifferentiated ependymal cell population that is hyperproliferative in the ventricular system causing an impediment of CSF circulation. It is further concluded that normal E2F1 and E2F4 expression in brain development is crucial for the proper formation and function of the ventricular system.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. According to the WHO 2007 country report, Haiti lags behind the Millennium Development Goal of reducing child mortality and maintains the highest under-5 mortality rate in the Western hemisphere. 3 Overall, few studies exist that seek to better grasp barriers in caring for a seriously ill child in a resource-limited setting and only a handful propose sustainable, effective interventions. ^ Objectives. The objectives of this study are to describe the prevalence of serious illnesses among children hospitalized at 2 children's hospitals in Port au Prince, to determine the barriers faced when caring for seriously ill children, and to report hospital outcomes of children admitted with serious illnesses. ^ Methods. Data were gathered from 2 major children's hospitals in Port au Prince, Haiti (Grace Children's Hospital [GCH] and Hopital d l'Universite d'Etat d'Haiti [HUEH]) using a triangulated approach of focus group discussions, physician questionnaires, and retrospective chart review. 23 pediatric physicians participated in focus group discussions and completed a self-administered questionnaire evaluating healthcare provider knowledge, self-efficacy, and perceived barriers relating to the care of seriously ill children in a resource-limited setting. A sample of 240 patient charts meeting eligibility criteria was abstracted for pertinent elements including sociodemographics, documentation, treatment strategies, and outcomes. Factors associated with mortality were analyzed using χ2 test and Fisher exact test [Minitab v.15]. ^ Results. The most common primary diagnoses at admission were gastroenteritis with moderate dehydration (35.5%), severe malnutrition (25.8%), and pneumonia (19.3%) for GCH, and severe malnutrition (32.6%), sepsis (24.7%), and severe respiratory distress (18%) for HUEH. Overall, 12.9% and 27% of seriously ill patients presented with shock to GCH and HUEH, respectively. ^ Shortage of necessary materials and equipment represented the most commonly reported limitation (18/23 respondents). According to chart data, 9.4% of children presenting with shock did not receive a fluid bolus, and only 8% of patients presenting with altered mental status or seizures received a glucose check. 65% of patients with meningitis did not receive a lumbar puncture due to lack of materials. ^ Hospital mortality rates did not differ by gender or by institution. Children who died were more likely to have a history of prematurity (OR 4.97 [95% CI 1.32-18.80]), an incomplete vaccination record (OR 4.05 [95% CI 1.68-9.74]), or a weight for age ≤3rd percentile (OR 6.1 [95% CI 2.49-14.93]. Case-fatality rates were significantly higher among those who presented with signs of shock compared with those who did not (23.1% vs. 10.7%, RR=2.16, p=0.03). Caregivers did not achieve shock reversal in 21% of patients and did not document shock reversal in 50% of patients. ^ Conclusions. Many challenges face those who seek to optimize care for seriously ill children in resource-limited settings. Specifically, in Haiti, qualitative and quantitative data suggest major issues with lack of supplies, pre-hospital factors, including malnutrition as a comorbidity, and early recognition and management of shock. A tailored intervention designed to address these issues is needed in order to prospectively evaluate improvements in child mortality in a high-risk population.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lindane, or γ-hexachlorocyclohexane, is a chlorinated hydrocarbon pesticide that was banned from U.S. production in 1976, but until recently continued to be imported and applied for occupational and domestic purposes. Lindane is known to cause central nervous system (CNS), immune, cardiovascular, reproductive, liver, and kidney toxicity. The mechanism for which lindane interacts with the CNS has been elucidated, and involves antagonism of the γ-aminobutyric acid/benzodiazepine (GABAA/BZD) receptor. Antagonism of this receptor results in the inhibition of Cl- channel flux, with subsequent convulsions, seizures, and paralysis. This response makes lindane a desirable defense against arthropod pests in agriculture and the home. However, formulation and application of this compound can contribute to human toxicity. In conjunction with this exposure scenario, workers may be subject to both heat and physical stress that may increase their susceptibility to pesticide toxicity by altering their cellular stress response. The kidneys are responsible for maintaining osmotic homeostasis, and are exposed to agents that undergo urinary excretion. The mechanistic action of lindane on the kidneys is not well understood. Lindane, in other organ systems, has been shown to cause cellular damage by generation of free radicals and oxidative stress. Previous research in our laboratory has shown that lindane causes apoptosis in distal tubule cells, and delays renal stress response under hypertonic stress. Characterizing the mechanism of action of lindane under conditions of physiologic stress is necessary to understand the potential hazard cyclodiene pesticides and other organochlorine compounds pose to exposed individuals under baseline conditions, as well as under conditions of physiologic stress. We demonstrated that exposure to lindane results in oxidative damage and dysregulation of glutathione response in renal distal tubule (MDCK) cells. We showed that under conditions of hypertonic stress, lindane-induced oxidative stress resulted in early onset apoptosis and corresponding down-regulated expression of the anti-apoptotic protein, Bcl-xL. Thus, the interaction of lindane with renal peripheral benzodiazepine receptors (PBR) is associated with attenuation of cellular protective proteins, making the cell more susceptible to injury or death. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Slow Learners" is a term used to describe children with an IQ range of 70-89 on a standardized individual intelligence test (i.e. with a standard deviation of either 15 or 16). They have above retarded, but below average intelligence and potential to learn. If the factors associated with the etiology of slow learning in children can be identified, it may be possible to hypothesize causal relationships which can be tested by intervention studies specifically designed to prevent slow learning. If effective, these may ultimately reduce the incidence of school dropouts and their cost to society. To date, there is little information about variables which may be etiologically significant. In an attempt to identify such etiologic factors this study examines the sociodemographic characteristics, prenatal history (hypertension, smoking, infections, medication, vaginal bleeding, etc.), natal history (length of delivery, Apgar score, birth trauma, resuscitation, etc.), neonatal history (infections, seizures, head trauma, etc.), developmental history (health problems, developmental milestones and growth during infancy and early childhood), and family history (educational level of the parents, occupation, history of similar condition in the family, etc.) of a series of children defined as slow learners. The study is limited to children from middle to high socioeconomic families in order to exclude the possible confounding variable of low socioeconomic status, and because a descriptive study of this group has not been previously reported. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To study the risk factors for eclampsia, a rare but significant complication of pregnancy.^ Target population. All deliveries at or after the 20th week of gestation that took place between January 1, 1977 and March 1992, and between January 1990 and April 1992 at two hospitals in Houston, Texas, respectively.^ Study population. Sixty-six confirmed cases of eclampsia, and 2 groups of randomly selected controls: Non-preeclamptic and preeclamptic deliveries matched to cases on hospital and month of delivery on a 1:4 ratio.^ Exclusions. Women with chronic hypertension, gestational epilepsy, a previous history of epilepsy, and convulsions attributed to encephalitis, meningitis, cerebral tumor, and intracerebral bleeding, and women without a definite diagnosis of preeclampsia/eclampsia.^ Results. Eclampsia developed in 0.52-0.93/1000 deliveries. Fifty-six percent of seizures occurred in the antepartum period, 2% as early as 20 weeks of gestation and 39% between 37 and 42 weeks. Twenty-nine percent and 15% occurred in the postpartum and late postpartum periods, respectively, 8% as late as one week postpartum. A different set of risk factors was involved in the development of eclampsia in non-preeclamptic women than in the progression from preeclampsia to eclampsia. Factors involved in the development of eclampsia included, in addition to twin pregnancy and family history of pregnancy-induced hypertension, fewer than 3 prenatal care visits, urinary tract infections, primigravidity, obesity, black ethnicity, diabetes mellitus, and age $\le$20 years. Risk factors involved in the progression from preeclampsia to eclampsia included fewer than 3 of prenatal care visits, and age $\le$20 years. Protective factors were magnesium sulfate administration prior to seizure, history of abortions and longer gestational age. Having less than 3 prenatal care visits and being less than or equal to 20 years of age were predictors of eclampsia, whether of its development or progression from preeclampsia. Once preeclampsia is diagnosed, primigravid, diabetic, black, or obese women and those with urinary tract infections did not appear to exhibit any increased risk for the progression to eclampsia. The administration of magnesium sulfate was especially protective, followed by a positive history of abortions, 3 or more prenatal care visits, and longer gestational age. The protective effect of MgSO$\sb4$ was only slightly diminished when cases were restricted to the 65% who had a diagnosis of preeclampsia. The progression from preeclampsia to eclampsia may be largely preventable through adequate prenatal care and presumably the administration of magnesium sulfate. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epilepsy is a very complex disease which can have a variety of etiologies, co-morbidities, and a long list of psychosocial factors4. Clinical management of epilepsy patients typically includes serological tests, EEG's, and imaging studies to determine the single best antiepileptic drug (AED). Self-management is a vital component of achieving optimal health when living with a chronic disease. For patients with epilepsy self-management includes any necessary actions to control seizures and cope with any subsequent effects of the condition9; including aspects of treatment, seizure, and lifestyle. The use of computer-based applications can allow for more effective use of clinic visits and ultimately enhance the patient-provider relationship through focused discussion of determinants affecting self-management. ^ The purpose of this study is to conduct a systematic literature review on informatics application in epilepsy self-management in an effort to describe current evidence for informatics applications and decision support as an adjunct to successful clinical management of epilepsy. Each publication was analyzed for the type of study design utilized. ^ A total of 68 publications were included and categorized by the study design used, development stage, and clinical domain. Descriptive study designs comprised of three-fourths of the publications and indicate an underwhelming use of prospective studies. The vast majority of prospective studies also focused on clinician use to increase knowledge in treating patients with epilepsy. ^ Due to the chronic nature of epilepsy and the difficulty that both clinicians and patients can experience in managing epilepsy, more prospective studies are needed to evaluate applications that can effectively increase management activities. Within the last two decades of epilepsy research, management studies have employed the use of biomedical informatics applications. While the use of computer applications to manage epilepsy has increased, more progress is needed.^