10 resultados para LI-FRAUMENI

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li-Fraumeni Syndrome (LFS) is a hereditary cancer syndrome which predisposes individuals to cancer beginning in childhood. These risks are spread across a lifetime, from early childhood to adulthood. Mutations in the p53 tumor suppressor gene are known to cause the majority of cases of LFS. The risk for early onset cancer in individuals with Li-Fraumeni Syndrome is high. Studies have shown that individuals with LFS have a 90% lifetime cancer risk. Children under 18 have up to a 15% chance of cancer development. Effectiveness of cancer screening and management in individuals with Li-Fraumeni Syndrome is unclear. Screening for LFS-associated cancers has not been shown to reduce mortality. Due to the lack of effective screening techniques for childhood cancers, institutions vary with regard to their policies on testing children for LFS. There are currently no national guidelines regarding predictive testing of children who are at risk of inheriting LFS. No studies have looked at parental attitudes towards predictive p53 genetic testing in their children. This was a cross-sectional pilot study aimed at describing these attitudes. We identified individuals whose children were at risk for inheriting p53 genetic mutations. These individuals were provided with surveys which included validated measures addressing attitudes and beliefs towards genetic testing. The questionnaire included qualitative and quantitative measures. Six individuals completed and returned the questionnaire with a response rate of 28.57%. In general, respondents agreed that parents should have the opportunity to obtain p53 genetic testing for their child. Parents vary in regard to their attitudes towards who should be involved in the decision making process and at what time and under what considerations testing should occur. Testing motivations cited most important by respondents included family history, planning for the future and health management. Concern for insurance genetic discrimination was cited as the most important “con” to genetic testing. Although limited by a poor response rate, this study can give health care practitioners insight into testing attitudes and beliefs of families considering pediatric genetic testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pedigree analysis of certain families with a high incidence of tumors suggests a genetic predisposition to cancer. Li and Fraumeni described a familial cancer syndrome that is characterized by multiple primary tumors, early age of onset, and marked variation in tumor type. Williams and Strong (1) demonstrated that at least 7% of childhood soft tissue sarcoma patients had family histories that is readily explained by a highly penetrant autosomal dominant gene. To characterize the mechanism for genetic predisposition to many tumor types in these families, we have studied genetic alterations in fibroblasts, a target tissue from patients with the Li-Fraumeni Syndrome (LFS).^ We have observed spontaneous changes in initially normal dermal fibroblasts from LFS patients as they are cultured in vitro. The cells acquire an altered morphology, chromosomal anomalies, and anchorage-independent growth. This aberrant behavior of fibroblasts from LFS patients had never been observed in fibroblasts from normal donors. In addition to these phenotypic alterations, patient fibroblasts spontaneously immortalize by 50 population doublings (pd) in culture; unlike controls that remain normal and senesce by 30-35 (2). At 50 pd, immortal fibroblasts from two patients were found to be susceptible to tumorigenic transformation by an activated T24 H-ras oncogene (3). Approximately 80% of the oncogene expressing transfectants were capable of forming tumors in nude mice within 2-3 weeks. p53 has been previously associated with immortalization of cells in culture and cooperation with ras in transfection assays. Therefore, patients' fibroblast and lymphocyte derived DNA was tested for point mutations in p53. It was shown that LFS patients inherited certain point mutations in one of the two p53 alleles (4). Further studies on the above LFS immortal fibroblasts have demonstrated loss of the remaining p53 allele concomitant with escape from senescence. While the loss of the second allele correlates with immortalization it is not sufficient to transformation by an activated H-ras or N-ras oncogene. These immortal fibroblasts are resistant to tumorigenic transformation by v-abl, v-src, c-neu or v-mos oncogene; implying that additional steps are required in the tumorigenic progression of LFS patients' fibroblasts.^ References. (1) Williams et al., J. Natl. Cancer Inst. 79:1213, 1987. (2) Bischoff et al., Cancer Res. 50:7979, 1990. (3) Bischoff et al., Oncogene 6:183, 1991. (4) Malkin et al., Science 250:1233, 1990. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li- Fraumeni Syndrome (LFS) is a rare autosomal dominant hereditary cancer syndrome caused by mutations in the TP53 gene that predisposes individuals to a wide variety of cancers, including breast cancer, soft tissue sarcomas, osteosarcomas, brain tumors, and adrenocortical carcinomas. Individuals found to carry germline mutations in TP53 have a 90% lifetime cancer risk, with a 20% chance to develop cancer under the age of 20. Despite the significant risk of childhood cancer, predictive testing for unaffected minors at risk for LFS historically has not been recommended, largely due to the lack of available and effective screening for the types of cancers involved. A recently developed screening protocol suggests an advantage to identifying and screening children at risk for LFS and we therefore hypothesized that this alongside with the availability of new screening modalities may substantiate a shift in recommendations for predictive genetic testing in minors at risk for LFS. We aimed to describe current screening recommendations that genetic counselors provide to this population as well as explore factors that may have influenced genetic counselors attitude and practice in regards to this issue. An online survey was emailed to members of the National Society of Genetic Counselors (NSGC) and the Canadian Association of Genetic Counsellors (CAGC). Of an estimated 1000 eligible participants, 172 completed surveys that were analyzed. Genetic counselors in this study were more likely to support predictive genetic testing for this population as the minor aged (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Missense mutations in the p53 tumor-suppressor gene are the most common alterations of p53 in somatic tumors and in patients with Li-Fraumeni syndrome. p53 missense mutations occur in the DNA binding region and disrupt the ability of p53 to activate transcription. In vitro studies have shown that some p53 missense mutants have a gain-of-function or dominant-negative activity. ^ The p53 175 Arg-to-His (p53 R175H) mutation in humans has been shown to have dominant-negative and gain-of-function properties in vitro. This mutation is observed in the germline of individuals with Li-Fraumeni syndrome. To accurately model Li-Fraumeni syndrome and to examine the mechanistic nature of a gain-of-function missense mutation on in vivo tumorigenesis, we generated and characterized a mouse with the corresponding mutation, p53 R172H. p53R172H homozygous and heterozygous mice developed similar tumor spectra and survival curves as p53 −/− and p53+/− mice, respectively. However, tumors in p53+/R172H mice metastasized to various organs with high frequency, suggesting a gain-of-function phenotype by p53R172H in vivo. Mouse embryonic fibroblasts (MEFs) from p53R172H mice also showed gain-of-function phenotypes in cell proliferation, DNA synthesis, and transformation potential, while cells from p53+/− and p53−/− mice did not. ^ To mechanistically characterize the gain-of-function phenotype of the p53R172H mutant, the role of p53 family members, p63 and p73, was analyzed. Disruption of p63 and p73 by siRNAs in p53 −/− MEFs increased transformation potential and reinitiated DNA synthesis to levels observed in p53R172H/R172H cells. Additionally, p63 and p73 were bound and functionally inactivated by p53R172H in metastatic p53 R172H tumor-derived cell lines, indicating a role for the p53 family members in the gain-of-function phenotype. This study provides in vivo evidence for the gain-of-function effect of p53 missense mutations and more accurately models the Li-Fraumeni syndrome. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic anticipation is defined as a decrease in age of onset or increase in severity as the disorder is transmitted through subsequent generations. Anticipation has been noted in the literature for over a century. Recently, anticipation in several diseases including Huntington's Disease, Myotonic Dystrophy and Fragile X Syndrome were shown to be caused by expansion of triplet repeats. Anticipation effects have also been observed in numerous mental disorders (e.g. Schizophrenia, Bipolar Disorder), cancers (Li-Fraumeni Syndrome, Leukemia) and other complex diseases. ^ Several statistical methods have been applied to determine whether anticipation is a true phenomenon in a particular disorder, including standard statistical tests and newly developed affected parent/affected child pair methods. These methods have been shown to be inappropriate for assessing anticipation for a variety of reasons, including familial correlation and low power. Therefore, we have developed family-based likelihood modeling approaches to model the underlying transmission of the disease gene and penetrance function and hence detect anticipation. These methods can be applied in extended families, thus improving the power to detect anticipation compared with existing methods based only upon parents and children. The first method we have proposed is based on the regressive logistic hazard model. This approach models anticipation by a generational covariate. The second method allows alleles to mutate as they are transmitted from parents to offspring and is appropriate for modeling the known triplet repeat diseases in which the disease alleles can become more deleterious as they are transmitted across generations. ^ To evaluate the new methods, we performed extensive simulation studies for data simulated under different conditions to evaluate the effectiveness of the algorithms to detect genetic anticipation. Results from analysis by the first method yielded empirical power greater than 87% based on the 5% type I error critical value identified in each simulation depending on the method of data generation and current age criteria. Analysis by the second method was not possible due to the current formulation of the software. The application of this method to Huntington's Disease and Li-Fraumeni Syndrome data sets revealed evidence for a generation effect in both cases. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rare familial cancer syndrome involving childhood brain tumors (CBT), breast cancer, sarcomas and an array of other tumors has been described (Li and Fraumeni 1969, 1975, 1982, 1987). A survey of CBT identified through the Connnecticut Tumor Registry in 1984 revealed a high frequency of CBT, leukemia and other childhood cancer in siblings of CBT patients (Farwell and Flannery, 1984). Other syndromes such as neurofibromatosis and nevoid basal cell carcinoma syndrome have also been associated with CBT; however, no systematic family studies have been conducted to determine the extent to which cancer aggregates in family members of CBT patients. This family study was designed to determine the frequency of cancer aggregation overall or at specific sites, to determine the frequency of known or potentially hereditary syndromes in families of CBT patients, and to determine a genetic model to characterize familial cancer syndromes and to identify specific kindreds to which such a model(s) might apply. This study includes 244 confirmed CBT patients referred to the University of Texas M. D. Anderson Cancer Center between the years 1944 and 1983, diagnosed under the age of 15 years and resident in the U.S. or Canada. Family histories were obtained on the proband's first (parents, siblings and offspring) and second degree (proband's aunts, uncles and grandparents) relatives following sequential sampling scheme rules. To determine if cancer aggregates in families, we compared the cancer experience in the population to that expected in the general population using Connecticut Tumor Registry calendar year, age, race and sex-specific rates. The standardized incidence ratio (SIR) for cancer overall was 0.91 (41 observed (O) and 44.94 expected (E); 95% Confidence Interval (CI) = 0.65-1.24). We observed a significant excess of colon cancer among the proband's first degree relatives (O/E = 5/1.64; 95% CI = 1.01-7.65), in particular those under age 45 year. Segregation analysis showed evidence for multifactorial inheritance in the small percentage (N = 5) of the families. ^